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Outline of Part 3

I Implementing explanations methods

I Automatic differentiation, backward hooks, “.data”

I Theoretical embedding with (deep) Taylor expansions

I Evaluating explanation methods

I Extending explanations

I Extending beyond heatmaps
I Extending beyond neural networks
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3.a Implementation
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Implementation

Implementation of different techniques can be made simple by using special techniques or tricks:

I Gradient× Input

I Automatic differentiation

I Deconvolution

I Backward hooks

I Layer-wise relevance propagation

I .detach()
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Implementing Gradient× Input

Input:

Output:
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Implementing Deconvolution

Neuron function in a deep rectifier network:

zk =
∑

0,j ajwjk ak = max(0, zk)

Multivariate chain rule for derivatives (used to compute ∇f (x)):

∂f

∂aj
=
∑
k

∂ak
∂aj

∂f

∂ak

δj =
∑
k wjkstep(zk)δk (standard)

Modify the backpropagation procedure:

δj = max(0,
∑
k wjkstep(zk)δk) (deconvolution [14])

δj = max(0,
∑
k wjkstep(zk)δk) (deconvolution, guided version [12])
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Implementing Deconvolution (guided version, × input)

Input:

Output:
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Implementing LRP

Observation: Writing relevance scores as Rj as ajcj and Rk = akck , the LRP-γ propagation

rule can also be expressed as:

cj =
∑
k

(wjk + γw+
jk )

ak
pk

ck with pk =
∑

0,j aj(wjk + γw+
jk )

and this can be further simplified to

cj =
∑
k

∂pk
∂aj

ak
pk

ck =
∑
k

∂

∂aj

(
pk ·

[ak
pk

]
cst.

)
ck

which has the structure of the multivariate chain rule for gradient propagation.

Now, we can replace ak by pk · [ak/pk ]cst. in the forward pass and then run standard automatic

differentiation get the LRP explanation [10].
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Implementing LRP (simplified)
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Implementing LRP (simplified)

Input:

Output:
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3.b Theoretical Embedding
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Taylor Expansions

I Many ML models f (x) are complex and

nonlinear when taken globally but are simple

and linear when taken locally.

I The function can be approximated locally by some Taylor expansion:

f (x) = f (x̃) +
∑d
i=1 [∇f (x̃)]i · (xi − x̃i )︸ ︷︷ ︸

Ri

+ . . .

I First-order terms Ri of the expansion can serve as an explanation.

I The explanation (Ri )i depends on the choice of root point x̃.
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Linear Models and Taylor Decomposition

(Homogeneous) linear model

f (x) = w>x

= w1x1 + w2x2 + · · ·+ wdxd

We first observe that for all x:

∇f (x) = w

Then, the first-order terms of the Taylor expansion at

root point x̃ = 0 reduce to:

Ri = [∇f (x̃)]i · (xi − x̃i )

= [w]i · (xi − x̃i )

= wixi
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Gradient× Input as a Taylor Decomposition

Proposition: When the function f is positive homogeneous, Gradient× Input corre-

sponds to a Taylor expansion at a root point x̃ = ε · x with ε almost zero.

Recall: we have found in Part 2 that the gradient of a positive homogeneous function is the

same on any point on the segment (0, x).

Proof: We now define x̃ = ε · x a reference point with ε almost zero, we can show the

connection:

[∇f (x)]i · xi ≈ [∇f (εx)]i · xi · (1− ε) = [∇f (x̃)]i · (xi − x̃i )

The right hand side corresponds to the first-order terms of a Taylor expansion.
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LRP as a Deep Taylor Decomposition

LRP can be embedded in the framework of deep Taylor decomposition (DTD) [7] which sees

propagation as identifying linear terms of the Taylor expansion:

Rk(a) = Rk(ã) +
∑
j [∇Rk(ã)]j · (aj − ãj) + . . .
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Deriving the LRP-γ Rule with DTD

1. Because Rk(a) is complicated, DTD uses the approximation:

R̂k(a) =
(∑

0,j ajwjk
)
· ck ck = const.

2. We choose ã on the line {a− ta� (1 + γ · 1wk�0); t ∈ R}. This

corresponds to moving towards the origin, but faster along

dimensions with positive weights.

3. Performing a Taylor expansion at ã gives the first-order terms:

Rj←k = [∇R̂k(ã)]j · (aj − ãj)

= wjk · ck · t · aj · (1 + γ · 1wjk≥0)

= t · aj · (wjk + γw+
jk ) · ck

4. Resolving t and applying
∑
k gives the LRP-γ rule.

Rk

a

ck

a

a1

a2

ak

a~
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3.c Evaluating Explanations

Occlusion Smooth IG LRPinput

Which explanation technique should be preferred?
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Desiderata of an Explanation

1. Fidelity: The explanation should reflect the quantity being

explained and not something else.

2. Understandability: The explanation must be easily

understandable by its receiver.

3. Sufficiency: The explanation should provide sufficient

information on how the model came up with its prediction.

4. Low Overhead: The explanation should not cause the

prediction model to become less accurate or less efficient.

5. Runtime Efficiency: Explanations should be computable in

reasonable time.

(cf. Swartout & Moore 1993 [13])
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Evaluating Fidelity: Pixel-Flipping

I The pixel-flipping procedure [9] destroys pixels from most to least relevant according to

the explanation, and keeps track of the neural network output.

I The faster the output decreases, the better the explanation.
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Evaluating Fidelity: Pixel-Flipping on VGG-16
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I All explanation methods are more faithful than a

random explanation.

I IG is the most faithful for the first few most

relevant pixels, and then stagnates.

I Although not detected by VGG-16 anymore, the

class-relevant patterns are still there after

flipping (e.g. we can still see the dog). Did IG

actually explain a vulnerability of VGG-16

instead of its typical behavior?
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Evaluating Understandability: File Size

Occlusion Smooth IG LRPinput

I A simple proxy quantity for understandability is average file size (the smaller, the easier

to understand) [10]:

I Better measures based on some human perceptual model, or some cognitive experiment,

can be designed (e.g. [5]).
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Evaluating Sufficiency

I Example of a faithful, understandable, but insufficient explanation

Q: Why did the classifier predict this image to be a ‘lighthouse’ ?

A: Because the classifier found a lighthouse in the image.

I Evaluating sufficiency:

I Is the explanation actionable? (e.g. can we improve a model

from the produced explanations).
I Can we learn something general about the classifier? (e.g.

what kind of features it uses).

I Is it sufficient to explain a prediction in terms of individual pixels,

or should we identify higher-order interactions?
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3.d Extending Explanations

Beyond Heatmaps
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From 1st-Order to Higher-Order Explanations

I First-order explanations support basic reasoning

(input features contribute additively to the

prediction).

I Many real-world predictions occur due to a

conjunction of factors (e.g. two objects being

present simultaneously in the data).

I These conjunctions can be captured by high-order

explanations.

x1 x2

x3

x4

x5x6

x7

x8

x1 x2

x3

x4

x5x6

x7

x8

1st order

2nd order
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Explanation with 2nd-Order Taylor Expansions

x1 x2

x3

x4

x5x6

x7

x8

x1 x2

x3

x4

x5x6

x7

x8

1st order

2nd order

2nd-order Taylor expansion

f (x) = f (x̃)

+
∑
i [∇f (x̃)]i (xi − x̃i)

+
∑
ii ′

1
2
[∇2f (x̃)]ii ′ (xi − x̃i) (xi ′ − x̃i ′)

+ . . .

2nd-order deep Taylor expansion

Rkk ′(a) = Rkk ′(ã)

+
∑
j [∇Rkk ′(ã)]j · (aj − ãj)

+
∑
jj ′

1
2
[∇2Rkk ′(ã)]jj ′ · (aj − ãj) (aj ′ − ãj ′)

+ . . .
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Explaining Similarity with BiLRP [1]

I Applies to dot-product similarities of the type

y(x, x′) = 〈φL ◦ · · · ◦ φ1(x), φL ◦ · · · ◦ φ1(x
′)〉

where φL ◦ · · · ◦ φ1 is a deep rectifier network.

I Performs a 2nd-order (deep) Taylor decomposition of the similarity score. The

procedure factorizes into an composition of multiple standard LRP computations.

x

x'

LRP

LRP

LRP

LRP

LRP

LRP

Step 1 Step 2 Step 3Input Explanation
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Explaining Similarity with BiLRP [1]

A 

E D F 

B C 

G
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Explaining Graph Neural Networks

input graph

prediction

initial state

t=0

t=Texplanation

High-order Taylor expansion to decompose the

prediction in terms of ‘relevant walks’ [11]:

RW =
∂|W|f

. . . ∂λJK . . .

∣∣∣∣
Λ=Λ̃

·
[
. . . · (λJK − λ̃JK ) · . . .

]
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Explaining Graph Neural Networks

Example:

I Explaining why an input graph x is predicted by some GNN to be a Barabási-Albert (BA)

graph of growth parameter 1 or 2 (i.e. “tree” or “not tree”).

1st-order explanation [8] High-order explanation (GNN-LRP) [11]

evidence for "tree" evidence for "not tree" evidence for "tree" evidence for "not tree"
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3.e Extending Explanations

Beyond Neural Nets



31/39

Extending Explanations Beyond Neural Networks

Observation:

I Non-neural network algorithms such as kernel machines remain popular

for unsupervised tasks, e.g. kernel density estimation, one-class SVMs,

kernel k-means.

Two possible approaches:

1. Adapt explanation methods to handle these kernel models.

2. Rewrite these models as neural networks [2, 3, 4] (‘neuralize’ them).
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Neuralizing Kernel Density Models [3, 4]

Kernel density estimation (KDE) and one-class SVMs are non-neural network models for density

estimation / anomaly detection. The inlier score can be generically written as a weighted sum

of kernel scores:

f (x) =
∑N
j=1 αj exp(−γ‖x− xj‖2)

If interested in detecting anomaly, we can consider instead the quantity o(x) = − log f (x).

This quantity can be rewritten as a strictly equivalent two-layer neural network:

hj = γ‖x− xj‖2 − logαj (layer 1)

o(x) = − log
(∑N

j=1 exp(−︸ ︷︷ ︸
smin

hj)
)

(layer 2)

Standard explanation techniques for neural networks (e.g. LRP) can now be applied.
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Neuralizing Log-Likelihood Ratios [2, 6]

Class or cluster membership probabilities are often modeled via the ‘softmax’ function:

pk =
exp(w>k a)∑
j exp(w>j a)

Because softmax saturates at 0 and 1, it doesn’t capture the full evidence for/against the

class. The log-likelihood ratio `k = log(pk/(1− pk)) does not saturate.

This quantity can be rewritten as a strictly equivalent two-layer neural network:

hj = (wk −wj)
>a (layer 1)

`k(a) = − log
∑
j 6=k exp(−︸ ︷︷ ︸

smin

hj) (layer 2)

Again, explanation techniques for neural networks (e.g. LRP) can now be applied.
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Example: Explaining ‘Passenger Car’

I We explain the output before

and after the log-likelihood ratio

(logit).

I Locomotive is correlated to the

passenger car, but it lowers the

probability of the class

passenger car, because it raises

the probability of the class

locomotive.
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Neuralizing Kernel K-Means [2]

Kernel k-means model (KDE + softmax)

pc =

(
Z−1
c

∑
i∈Cc exp(−γ‖x− xi‖2)

)β/γ∑
k

(
Z−1
k

∑
j∈Ck exp(−γ‖x− xj‖2)

)β/γ
Again, this model can be rewritten as a strictly equivalent

neural network composed of a linear layer and a succession of

pooling layers.

log
[ pc
1− pc

]
= β smin

k 6=c
β
{
smin
j∈Ck

γ
{
smax
i∈Cc

γ
{

w>ij x + bijk
}}}

with

I wij = 2(xi − xj)

I bijk = ‖xj‖2 − ‖xi‖2 + γ−1(logZk − logZc)
I sminγj {·} = −γ

−1 log
∑
j exp(−γ(·))
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Summary

I Explanation methods are easy to implement when using the proper tricks (backward

hooks, .detach()).

I Explanation methods can be cast into the theoretical framework of Taylor expansions.

I Evaluating explanations requires to test multiple factors (fidelity, understandability,

sufficiency, ...)

I When heatmaps are not sufficient, explanations can be extended using higher-order

Taylor expansions.

I Some models that are not neural networks (e.g. kernel-based) can be converted into a

strictly equivalent neural networks ( or ‘neuralized’), so that explanation techniques such

as LRP can be applied.
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[1] O. Eberle, J. Büttner, F. Kräutli, K.-R. Müller, M. Valleriani, and G. Montavon.

Building and interpreting deep similarity models.

CoRR, abs/2003.05431, 2020.

[2] J. Kauffmann, M. Esders, G. Montavon, W. Samek, and K.-R. Müller.

From clustering to cluster explanations via neural networks.

CoRR, abs/1906.07633, 2019.

[3] J. Kauffmann, K.-R. Müller, and G. Montavon.

Towards explaining anomalies: A deep taylor decomposition of one-class models.

Pattern Recognit., 101:107198, 2020.

[4] J. Kauffmann, L. Ruff, G. Montavon, and K.-R. Müller.

The clever hans effect in anomaly detection.

CoRR, abs/2006.10609, 2020.

[5] I. Lage, E. Chen, J. He, M. Narayanan, B. Kim, S. Gershman, and F. Doshi-Velez.

An evaluation of the human-interpretability of explanation.

CoRR, abs/1902.00006, 2019.



38/39

References II

[6] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller.

Layer-wise relevance propagation: An overview.

In Explainable AI, volume 11700 of Lecture Notes in Computer Science, pages 193–209. Springer, 2019.

[7] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, and K.-R. Müller.

Explaining nonlinear classification decisions with deep taylor decomposition.

Pattern Recognit., 65:211–222, 2017.

[8] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann.

Explainability methods for graph convolutional neural networks.

In CVPR, pages 10772–10781. Computer Vision Foundation / IEEE, 2019.

[9] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K. Müller.

Evaluating the visualization of what a deep neural network has learned.

IEEE Trans. Neural Networks Learn. Syst., 28(11):2660–2673, 2017.

[10] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller.

Toward interpretable machine learning: Transparent deep neural networks and beyond.

CoRR, abs/2003.07631, 2020.



39/39

References III

[11] T. Schnake, O. Eberle, J. Lederer, S. Nakajima, K. T. Schütt, K.-R. Müller, and G. Montavon.
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