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Outline of Part 3

> Implementing explanations methods

» Automatic differentiation, backward hooks, ".data”

v

Theoretical embedding with (deep) Taylor expansions

v

Evaluating explanation methods
» Extending explanations

» Extending beyond heatmaps
» Extending beyond neural networks
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3.a Implementation
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Implementation

Implementation of different techniques can be made simple by using special techniques or tricks:

» Gradient x Input
» Automatic differentiation
> Deconvolution
» Backward hooks
» Layer-wise relevance propagation

» .detach()
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Implementing Gradient x Input

In

In

In

Z
Z Fraunhofﬁ; ﬂ

[2]:

[3]:

[4]:

Load VGG-16 Model

import torchvision
model = torchvision.models.vggl6(pretrained=True)
model.eval();

Prepare to compute input gradient

X.grad = None
X.requires grad (True);

Compute explanation: R; = [Vf(w)}z * I

model. forward(X)[0©,483].backward()
R = (X*X.grad)

Visualize explanation

utils.heatmap(R[0].sum(dim=0), 'explanation-gi.png")
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Implementing Deconvolution

Neuron function in a deep rectifier network:

Zk = ZOJ ajWik ax = max(0, zx)

Multivariate chain rule for derivatives (used to compute Vf(x)):
Z 63k of
aaj Ba; Day

o = Zk wikstep(zx )0k (standard)

Modify the backpropagation procedure:
(deconvolution [14])

& = max(0, 34 wik Ok)
(deconvolution, guided version [12])

0j = max(0, >, wistep(zx)dx)
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Implementing Deconvolution (guided version, x input)

Build a hook that rectifies the gradient

In [6]: def hook(mod, grad_in, grad out):
return (grad in[0].clamp(min=0),)

Register this hook in ReLU layers

In [7]: for i in [1,3,6,8,11,13,15,18,20,22,25,27,29]:
model. features[i].register_backward_hook(hook)

Apply Gradient X Input

In [8]: X.grad = None
X.requires_grad_(True); e
model.forward(X)[0,483].backward()
R = (X*X.grad)
utils.heatmap(R[O].sum(dim=0), 'explanation-gb.png"')
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Implementing LRP

Observation: Writing relevance scores as R; as ajc; and R = axck, the LRP-y propagation
rule can also be expressed as:

dk .
G = (Wi T oece with pe= 35 a;(wj + Yw)
k

and this can be further simplified to

6= g me= oy (o []., )

which has the structure of the multivariate chain rule for gradient propagation.

Now, we can replace ax by px - [ak/Pk]est. in the forward pass and then run standard automatic
differentiation get the LRP explanation [10].
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Implementing LRP (simplified)

Build an equivalent forward pass where part of it is detached

In [11]: class Conv(torch.nn.Module):

def init (self, conv, gamma):
torch.nn.Module.__init_ (self)
self.conv = conv
self.pconv = copy.deepcopy(conv)
self.pconv.weight = torch.nn.Parameter(
conv.weight+gamma*conv.weight.clamp(min=0)

)

def forward(self, X):
z = self.conv.forward(X)
zp = self.pconv.forward(X)
return zp * (z / zp).data

Z Fraunhofer 1
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Implementing LRP (simplified)

In [12]:

In [13]:

Z
Z Fraunhoft::: ﬂ

Replace layers by modified layers

T = model.features

for i in [2]: f[i] = Conv(f[i],1)

for i in [5,7]: f[i] = Conv(f[i],0.3)
for i in [10,12,14]: f[i] = Conv(f[i],0.1)
for i in [17,19,21]: f[i] = Conv(f[i],0.03)
for i in [24,26,28]: f[i] = Conv(f[i],0.01)

Apply Gradient X Input

X.grad = None

X.requires grad (True);

model. forward(X)[0,483].backward()

R = (X*X.grad)

utils.heatmap(R[0].sum(dim=0), 'explanation-lrp.png')
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3.b Theoretical Embedding
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Taylor Expansions

» Many ML models f(x) are complex and
nonlinear when taken globally but are simple
and linear when taken locally.

featura 7 (@

» The function can be approximated locally by some Taylor expansion:

Fx)=FR) + 20, VAR - (x5 —X) + . ..

R

» First-order terms R; of the expansion can serve as an explanation.

> The explanation (R;); depends on the choice of root point X.
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Linear Models and Taylor Decomposition

(Homogeneous) linear model

f(x) =w'x
= W1X1 —+ Wh Xo + -+ Wy Xd \\ \\ : :.\\.\o \\
We first observe that for all x: oo el
Vf(x)=w N U e e N
Then, the first-order terms of the Taylor expansion at SOl x . ( :
L~ N UL S
root point X = 0 reduce to: 8 e . N .
Ri = [VIX)]i - (x —xi) N9 %
= [w]i - (x = X)) ST )

Wi Xi
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Gradient x Input as a Taylor Decomposition

Proposition: When the function f is positive homogeneous, Gradient x Input corre-
sponds to a Taylor expansion at a root point X = € - X with € almost zero.

Recall: we have found in Part 2 that the gradient of a positive homogeneous function is the
same on any point on the segment (0, x).

Proof: We now define X = € - x a reference point with £ almost zero, we can show the
connection:

VA - x ~ [VA(ex)]s - x - (1 - €) = [VFR)) - (x — X)

The right hand side corresponds to the first-order terms of a Taylor expansion. L]
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LRP as a Deep Taylor Decomposition

LRP can be embedded in the framework of deep Taylor decomposition (DTD) [7] which sees
propagation as identifying linear terms of the Taylor expansion:

Rk(a) = Rk(a) + > [VRk(@)]; - (3 — &) + . ..

.>—<>:. @~ O
a—»Rk\O:

Q\

<_©<_
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Deriving the LRP-y Rule with DTD

1. Because Ri(a) is complicated, DTD uses the approximation:
Ri(a) = (Zo,j ajWik) - Ck ¢k = const.

2. We choose a on the line {a—ta® (1 + - 1y,-0);t € R}. This
corresponds to moving towards the origin, but faster along
dimensions with positive weights.

3. Performing a Taylor expansion at a gives the first-order terms:
Rick = [VRk(@)]; - (aj — &)
=Wj - -t a3 (147 1w, >0)

=t-a - (Wi +Ywi) - o

4. Resolving t and applying >, gives the LRP-y rule.
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3.c Evaluating Explanations

Occlusion Smooth IG LRP

Which explanation technique should be preferred?
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Desiderata of an Explanation

1. Fidelity: The explanation should reflect the quantity being
explained and not something else.

2. Understandability: The explanation must be easily
understandable by its receiver.

3. Sufficiency: The explanation should provide sufficient
information on how the model came up with its prediction.

4. Low Overhead: The explanation should not cause the
prediction model to become less accurate or less efficient.

5. Runtime Efficiency: Explanations should be computable in
reasonable time.

(cf. Swartout & Moore 1993 [13])
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Evaluating Fidelity: Pixel-Flipping

> The pixel-flipping procedure [9] destroys pixels from most to least relevant according to
the explanation, and keeps track of the neural network output.

» The faster the output decreases, the better the explanation.

AOC=0.722

score for correct class

0 10 20 30 40 50 60 70 80 90 100
# pixel flips
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Evaluating Fidelity: Pixel-Flipping on VGG-16

VGG-16

» All explanation methods are more faithful than a
random explanation.

» |G is the most faithful for the first few most
relevant pixels, and then stagnates.

» Although not detected by VGG-16 anymore, the
class-relevant patterns are still there after
flipping (e.g. we can still see the dog). Did IG
actually explain a vulnerability of VGG-16
instead of its typical behavior?

mean output score

0 20 40 60 80 100
% of pixels perturbed
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Evaluating Understandability: File Size

input Occlusion Smooth IG LRP

- A -

> A simple proxy quantity for understandability is average file size (the smaller, the easier
to understand) [10]:

| Occ  IG  LRP

VGG-16 6984 5795.0 18283
ResNet-50 | 693.6 5978.0 2928.2

> Better measures based on some human perceptual model, or some cognitive experiment,
can be designed (e.g. [5]).
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Evaluating Sufficiency

» Example of a faithful, understandable, but insufficient explanation

Q: Why did the classifier predict this image to be a ‘lighthouse’?
A: Because the classifier found a lighthouse in the image.

» Evaluating sufficiency:

» Is the explanation actionable? (e.g. can we improve a model
from the produced explanations).

» Can we learn something general about the classifier? (e.g.
what kind of features it uses).

max(xg, x2)  min(xy, X2)

> Is it sufficient to explain a prediction in terms of individual pixels,
or should we identify higher-order interactions?
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3.d Extending Explanations
Beyond Heatmaps
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From 1st-Order to Higher-Order Explanations

@ @ 1st order

» First-order explanations support basic reasoning
(input features contribute additively to the
prediction).

» Many real-world predictions occur due to a @

conjunction of factors (e.g. two objects being

present simultaneously in the data). \ . @

» These conjunctions can be captured by high-order @ @

explanations.
2nd order @

00,
®O
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Explanation with 2nd-Order Taylor Expansions

2nd-order Taylor expansion
@ @ 1st order Fx) = (%)
@ + 22 VAL (i = %)
@ + 2 sV X)) (6 — %) (0 — %)

(=) (=) +.o.

2nd-order deep Taylor expansion

W o . @ Ruo(a) = Ree(3)
® /@ LY VRe@) (3 - 3)

smaorder (@) (%) + 5 AV R @y - (3~ 3) (ay — 37)

Z Fraunhofer Wojciech Samek, Grégoire Montavon
HHI [ | ECML/PKDD 2020 Tutorial: Explainable Al for Deep Networks - Basics and Extensions 25/39



Explaining Similarity with BiLRP [1]

» Applies to dot-product similarities of the type
y(x,xX) = (pro---0¢i(x),dro- - 0di(xX))

where ¢, o--- o ¢y is a deep rectifier network.

> Performs a 2nd-order (deep) Taylor decomposition of the similarity score. The
procedure factorizes into an composition of multiple standard LRP computations.

Input Step 1 Step 2 Step 3 Explanation
: ;
= -
—> ‘\
z'

_>/A
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Explaining Similarity with BiLRP [1]
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Explaining Graph Neural Networks

initial state

input graph A ——>

explanation

prediction f(A)

High-order Taylor expansion to decompose the
prediction in terms of ‘relevant walks' [11]:

oI
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Explaining Graph Neural Networks

Example:

> Explaining why an input graph x is predicted by some GNN to be a Barabasi-Albert (BA)
graph of growth parameter 1 or 2 (i.e. “tree” or “not tree”).

1st-order explanation [8] High-order explanation (GNN-LRP) [11]
evidence for "tree" evidence for "not tree" evidence for "tree" evidence for "not tree"
® . /a .
O . @ 5 e . @/o \ = o .
. . -<.j ‘.
o ‘ /| @/ l} .
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3.e Extending Explanations
Beyond Neural Nets
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Extending Explanations Beyond Neural Networks

Observation:

» Non-neural network algorithms such as kernel machines remain popular
for unsupervised tasks, e.g. kernel density estimation, one-class SVMs,
kernel k-means.

Two possible approaches:
1. Adapt explanation methods to handle these kernel models.

2. Rewrite these models as neural networks [2, 3, 4] (‘neuralize’ them).
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Neuralizing Kernel Density Models [3, 4]

Kernel density estimation (KDE) and one-class SVMs are non-neural network models for density
estimation / anomaly detection. The inlier score can be generically written as a weighted sum
of kernel scores:

F(x) = S/L; aj exp(—[x — x|?)

If interested in detecting anomaly, we can consider instead the quantity o(x) = — log f(x).

This quantity can be rewritten as a strictly equivalent two-layer neural network:

hj =llx = x> — log (layer 1)
o(x) = —log (Zszl exp(— hy)) (layer 2)
smin

Standard explanation techniques for neural networks (e.g. LRP) can now be applied.
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Neuralizing Log-Likelihood Ratios [2, 6]

Class or cluster membership probabilities are often modeled via the ‘softmax’ function:

exp(w/ a)
kS
> jexp(w/ a)

Because softmax saturates at 0 and 1, it doesn't capture the full evidence for/against the
class. The log-likelihood ratio £, = log(px/(1 — p«)) does not saturate.

Pk =

This quantity can be rewritten as a strictly equivalent two-layer neural network:
hi = (wx —w;)"a (layer 1) @
£(a) = —log >k exp(— hy) (layer 2) @
smin g

Again, explanation techniques for neural networks (e.g. LRP) can now be applied.
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Example: Explaining ‘Passenger Car’

output i
neuron logit

» We explain the output before
and after the log-likelihood ratio

(logit).

» Locomotive is correlated to the
passenger_car, but it lowers the
probability of the class
passenger_car, because it raises
the probability of the class
locomotive.
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Neuralizing Kernel K-Means [2]

Kernel k-means model (KDE + softmax)

_ B
_(ZF S (k= )7
- - B/
2ok (Zk ! Zjeck exp(—yllx — Xj||2)) !
Again, this model can be rewritten as a strictly equivalent

neural network composed of a linear layer and a succession of
pooling layers.

Pe

p . .
oo [ 25 = B (e i )]

with
> wi = 2(xi —x))
> b = [Ix1I” = [Ixil|* + v (log Zk — log Zc)
> smin’{-} = =y log > exp(—("))
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Summary

» Explanation methods are easy to implement when using the proper tricks (backward
hooks, .detach()).

» Explanation methods can be cast into the theoretical framework of Taylor expansions.

> Evaluating explanations requires to test multiple factors (fidelity, understandability,
sufficiency, ...)

» When heatmaps are not sufficient, explanations can be extended using higher-order
Taylor expansions.

> Some models that are not neural networks (e.g. kernel-based) can be converted into a
strictly equivalent neural networks ( or ‘neuralized’), so that explanation techniques such
as LRP can be applied.
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