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Abstract

The success of recent deep convolutional neural networks (CNNs) depends on
learning hidden representations that can summarize the important factors of vari-
ation behind the data. However, CNNs often criticized as being black boxes that
lack interpretability, since they have millions of unexplained model parameters. We
propose Network Dissection1, a general framework to quantify the interpretability
of the units inside a deep convolutional neural networks (CNNs). We compare
the different vocabularies of interpretable units as concept detectors emerged from
the networks trained to solve different supervised learning tasks such as object
recognition on ImageNet and scene classification on Places, and self-supervised
training tasks. The network dissection is further applied to analyze how the units
acting as semantic detectors grow and evolve over the training iterations both in
the scenario of the train-from-scratch and in the stage of the fine-tuning between
data sources. Our results highlight that interpretability is an important property of
deep neural networks that provides new insights into their hierarchical structure.

1 Introduction

Previous efforts to interpret the internals of a convolutional neural network have focused on visual-
izations, for example, visualizing image patches that maximize individual unit activations Zeiler &
Fergus (2014); Zhou et al. (2015); or using optimization to generate patterns and regions salient to a
unit Mahendran & Vedaldi (2015); Simonyan et al. (2014); Zeiler & Fergus (2014); Nguyen et al.
(2016); or rendering representation space using dimensionality reduction Maaten & Hinton (2008);
Jolliffe (2002). Though the visualizations give us the intuition about what image patterns the internal
units are trying to detect, the results based on visualization are usually qualitative and unable to be
interpreted quantitatively, i.e. which human interpretable concept some unit detects and how accurate
it is. Therefore it is still an open question on how to quantify the interpretability of the deep visual
representations and compare them beyond their classification power.

Recently we propose a framework called Network Dissection to quantify the interpretability of any
given CNNs Bau et al. (2017). Network dissection quantifies the interpretability of any given network
by measuring the degree of alignment between the unit activation and the ground-truth labels in a
pre-defined dictionary of concepts. Based on the quantified interpretability, we compare the semantis
of units in various networks from supervised training and self-supervised training, and the effect
of training iterations and fine-tunining to the internal representations of the networks. Our results
highlight that interpretability is an important property of deep neural networks that provides new
insights into their deep hierarchical structure.

1The complete paper and code are available at http://netdissect.csail.mit.edu

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Figure 1: Scoring unit interpretability by evaluating the unit activation for semantic segmentation.
Unit activation map is used to segment the top activated images, localizing the favorite image patterns
for that unit. The activation map is further used to segment the annotation mask to compute the IoU.

2 Overview of Network Dissection

To measure interpretability, we evaluate the ability of each hidden unit to solve segmentation problems
from a dictionary of human-interpretable visual concepts.

2.1 Broden: Broadly and Densely Labeled Dataset

As a dictionary of visual concepts, we construct the Broadly and Densely Labeled Dataset (Broden),
which unifies several densely labeled image data sets: ADE Zhou et al. (2017), OpenSurfaces
Bell et al. (2014), Pascal-Context Mottaghi et al. (2014), Pascal-Part Chen et al. (2014), and the
Describable Textures Dataset Cimpoi et al. (2014), containing a broad range of labeled classes of
objects, scenes, object parts, textures, and materials, with most examples labeled at the pixel level.

2.2 Scoring Unit Interpretability

Let c denote any concept within the Broden dataset and let k denote any convolutional unit in a CNN.
Network dissection defines the quality of the interpretation c for unit k by quantifying the ability of k
to solve the segmentation problem given by c using this IoU score:

IoUk,c =

∑
|Mk(x) ∩ Lc(x)|∑
|Mk(x) ∪ Lc(x)|

, (1)

In the above, x represents an image in the Broden dataset, Lc(x) is the set of pixels labeled with
concept c, and Mk(x) is binary mask selecting those pixels that lie within areas of highest activation
of unit k. Mk is computed by (bilinearly) upsampling the activation of k on input x, and applying a
threshold Tk that selects a fixed quantile (0.5%) of the pixels over the entire dataset. Because the data
set contains some categories of labels (such as textures) which are not present on some subsets of
inputs, the sums are computed only on the subset of images that have at least one labeled concept
of the same category as c. Figure 1 gives one example of computing the IoU over the top activated
images with semantic segmentation annotations.

The value of IoUk,c is the accuracy of unit k in detecting concept c. In our analysis, we consider a
unit k as a detector for concept c if IoUk,c > 0.04, and when a unit detects more than one concept,
we choose the top scoring label. To quantify the interpretability of a layer, we count the distinct
concepts detected, i.e., the number of unique detectors.
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3 Experiments

3.1 The emergent concept detectors across different networks

Network dissection is applied to the last convolutional layer of different networks (the details of
each network are available at the project page). Figure 2 shows the histogram of units identified as
concept detectors in each network. Each concept class might have several units as its detectors. For
example, for the networks trained on ImageNet, the most frequent detectrors are dog detectors. For
the networks trained on Places, the most frequent detector in AlexNet is water detector, while the
most frequent detector in ResNet is airplane detector. We can see that the emergent detectors vary
across training supervisions and network architectures. Figure 3 shows some exemplar detectors
from different networks grouped by some object classes. We can see that deeper networks such as
DenseNet and ResNet are able to capture more compact shapes of the object.

3.2 The emergence of concepts over training iterations

Figure 4 plots the interpretability of snapshots of the baseline model (AlexNet trained on Places205)
at different training iterations along with the accuracy on the validation set. We can see that object
detectors and part detectors start emerging at about 10,000 iterations (each iteration processes a batch
of 256 images). Meanwhile, we do not find the evidence of transitions across different concept levels
during training. For example, units in conv5 does not turn into texture or material detectors before
converging into object or part detectors. Besides, we see there is strong correlation between the
validation accuracy and the emergence of high-level object detectors thus the interpretability might
help debug the network during the training.

In Figure 5, we keep track of four units over different training iterations. We observe that the units
start converging to the semantic concept at early stage. For example, in the second row the unit
starts detecting mountain from iteration 5000. Meanwhile, some units have interesting transition over
concepts, for example the unit in the first row detects road first before it detects car.

3.3 The evolution of units in transfer learning

Fine-tuning the pre-trained network such as ImageNet-CNN to another target dataset is a commonly
used technique in transfer learning. It makes the training converge faster, while it leads to better
accuracy in the case that there is not enough training data at the target dataset. Here we observe that
the interpretation of the internal units evolves over different stages of training in the transfer learning.

Given a well trained Places-AlexNet and ImageNet-AlexNet respectively, we fine-tune the Places-
AlexNet on ImageNet and fine-tune the ImageNet-AlexNet on Places respectively. The interpretability
results of the snapshots of the networks over the fine-tuning iterations are plotted in Figure 6. We
can see that the training indeed converges faster compared to the network trained from scratch on
Places in Figure 4. The semantics of units also change over fine-tuning. For example, the number of
unique object detectors first drop then keep increasing for the network trained on ImageNet being
fine-tuned to Places365, while it is slowly dropping for the network trained on Places being fine-tuned
to ImageNet.

Figure 7 shows the evolution of the six units in the network fine-tuned from ImageNet to Places365
and reversely. The top associated interpretation for each unit keep evolving during the fine-tuning
process. For example, in the network fine-tuned from ImageNet to Places365, the first unit which
detects the white dog, evolves to detect the waterfall; the third unit which detects the green concept,
evolves to detect the baseball field. On the other hand, in the network fine-tuned from Places365 to
ImageNet, units detecting different concepts converge to detect dog-relevant concepts such as ear
and dog head. Interestingly though those units evolve to detect different concepts, many of them still
remain to have similarity in colors or textures.

4 Conclusion

Based on the network dissection, we compare the interpretability of deep visual representations for
a range of networks trained from different supervisions and training conditions. We show that the
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Figure 3: Comparison of several visual concept detectors identified by network dissection in DenseNet,
ResNet, GoogLeNet, VGG, and AlexNet. Each network is trained on Places365. The two highest-IoU
matches among convolutional units of each network is shown. The four maximally activated Broden
images segmented by unit activation map are shown as the visualization of each unit.
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Figure 4: The interpretability of the units at conv5 layer of the baseline model over 300,000 training
iterations. The validation accuracy is plotted below.
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Figure 5: The interpretation of four units evolves at different training iterations.
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Figure 6: The network interpretability under the fine-tuning between Places and ImageNet. The
validation accuracy is plotted below. The network architecture is the same as AlexNet.

interpretability based on unit-concept alignment is an important property of deep neural networks
that could be used to compare networks beyond their classification accuracy.
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