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Abstract

We develop a method of detecting statistical interactions in data by interpreting the
trained weights of a feedforward multilayer neural network. With sparsity regular-
ization applied to the weights, our method can achieve high interaction detection
performance without searching an exponential solution space of possible interac-
tions. We obtain our computational savings by first observing that interactions
between input features are created by the non-additive effect of nonlinear activa-
tion functions, and that interacting paths are encoded in weight matrices. We use
these observations to develop a way of identifying both pairwise and higher-order
interactions with a simple traversal over the input weight matrix. In experiments
on simulated and real-world data, we demonstrate the performance of our method
and the importance of discovered interactions.

1 Introduction

Despite their predictive capability, neural networks have traditionally been difficult to interpret,
preventing their adoption in many application domains. Healthcare and finance are examples of
such domains, where understanding a machine learning model is paramount when using it to make
critical decisions (Caruana et al., 2015; Goodman & Flaxman, 2016). This is because models can
learn unintended patterns from data, and the risks associated with depending on these models can be
consequential for stakeholders (Varshney & Alemzadeh, 2016).

Existing approaches to interpreting feedforward neural networks have focused on explanations of
feature importance, for example by computing input gradients (Hechtlinger, 2016; Ross et al., 2017)
or by using post-hoc means (Ribeiro et al., 2016). Owing to the importance of interpretation, we add
to the existing approaches by introducing a way of finding feature groupings that neural networks
model, in this case statistical interactions.

Statistical interactions carry great importance in natural phenomena, where features often have joint
effects with other features on predicting an outcome. This is different than correlation because
correlations do not involve outcome variables. The discovery of interactions can be very useful for
science, where for example, physicists may want to better understand what joint factors provide
evidence for new elementary particles. Moreover, interpreting interactions can also be useful for
validating machine learning models. For example, doctors may want to know what interactions
are accounted for in risk prediction models, to compare against known interactions from scientific
literature.

In this work, we developed a simple and efficient algorithm that proposes statistical interactions of
variable order in data, by accounting for all weights of a feedforward network that is fully-connected
across input features. Our approach is efficient because it avoids searching over an exponential
solution space of interaction candidates, which is achieved by making an approximation of hidden
unit importance at the first hidden layer via all weights above and doing a 2D traversal of the input
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weight matrix. We propose our framework, Neural Interaction Detector (NID), which generates a
ranking of interaction candidates solely by interpreting the weights of a feedforward network. Top-K
true interactions are then determined by finding a cutoff on the ranking using a special form of
generalized additive model, which accounts for interactions of variable order (Wood, 2006; Lou et al.,
2013). In experiments on simulated and real-world data, we evaluate the performance of our approach,
the results of which show similar interaction detection performance compared to the state-of-the-art
while taking orders of magnitude less time.

2 Background and Notations

Interaction Detection Statistical interaction detection has been a well-studied topic in statistics,
dating back to the 1920s when two-way ANOVA was first introduced (Fisher, 1925). Since then,
two general approaches emerged for conducting interaction detection. One approach has been to
conduct individual tests for each combination of features (Lou et al., 2013). The other approach has
been to pre-specify all interaction forms of interest, then use lasso to simultaneously select which are
important (Tibshirani, 1996; Bien et al., 2013). Our approach to interaction detection is unlike others
in that it is both fast and capable of detecting interactions of variable order without limiting their
functional forms. The approach is fast because it does not conduct individual tests for each interaction
to accomplish higher-order interaction detection. This property has the added benefit of avoiding a
high false positive-, or false discovery rate, that commonly arises from multiple testing (Benjamini &
Hochberg, 1995).

Interpretability Two general approaches to interpreting machine learning are local and global
interpretability. A local interpretation explains how a machine learning model makes predictions
over small regions of input data, whereas a global interpretation provides an understanding of how
the model behaves over all data (Ribeiro et al., 2016). For feedforward neural networks, there are
existing works that address these approaches. For example, the input gradient has been studied as a
way of locally explaining predictions at individual data points (Hechtlinger, 2016; Ross et al., 2017),
and weight interpretation has been studied for measuring global feature importance (Garson, 1991).
Our approach belongs to the global interpretation category, but unlike previous works, this work
interprets learned statistical interactions from the weights of a feedforward neural network.

Feedforward Neural Network1 Consider a feedforward neural network with L hidden layers. Let p`
be the number of hidden units in the `-th layer. We treat the input features as the 0-th layer and p0 = p
is the number of input features. There are L weight matrices W(`) ∈ Rp`×p`−1 , ` = 1, 2, . . . , L, and
L+ 1 bias vectors b(`) ∈ Rp` , ` = 0, 1, . . . , L. Let φ (·) be the activation function (non-linearity),
and let wy ∈ RpL and by ∈ R be the coefficients and bias for the final output. Then, the hidden units
h(`) of the neural network and the output y with input x ∈ Rp can be expressed as:

h(0) = x, y = (wy)
>
h(L) + by, and h(`) = φ

(
W(`)h(`−1) + b(`)

)
, ∀` = 1, 2, . . . , L.

Statistical Interaction Let [p] denote the set of integers from 1 to p. An interaction, I, is a subset
of all input features [p] with |I| ≥ 2, and an interaction that is higher-order denotes |I| ≥ 3. For a
vector w ∈ Rp and I ⊆ [p], let wI ∈ R|I| be the vector restricted to the dimensions specified by I.

Definition 1 (Non-Additive Statistical Interaction (Dodge, 2006; Sorokina et al., 2008)). Consider a
function f(·) with input variables xi, i ∈ [p], and an interaction I ⊆ [p]. Then I is a non-additive
interaction of function f(·) if and only if there does not exist a set of functions fi(·),∀i ∈ I where
fi(·) is not a function of xi, such that

f (x) =
∑
i∈I

fi
(
x[p]\{i}

)
.

For example, in x1x2 + sin (x2 + x3 + x4), there is a pairwise interaction {1, 2} and a 3-way
interaction {2, 3, 4}. Note that from the definition of statistical interaction, a d-way interaction can
only exist if all its corresponding (d− 1)-interactions exist (Sorokina et al., 2008). For example, the
interaction {1, 2, 3} can only exist if interactions {1, 2}, {1, 3}, and {2, 3} also exist.

1In this paper, we mainly focus on the multilayer perceptron architecture with ReLU activation functions,
while some of our results can be generalized to a broader class of feedforward neural networks.
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Algorithm 1 NID Greedy Ranking Algorithm

Input: input-to-first hidden layer weights W(1), aggregated weights z(1)
Output: ranked list of interaction candidates {Ii}mi=1

1: d← initialize an empty dictionary mapping interaction candidate to interaction strength
2: for each row w′ of W(1) indexed by r do
3: for j = 2 to p do
4: I ← sorted indices of top j weights in w′

5: d[I]← d[I] + z
(1)
r µ (|w′I |)

6: {Ii}mi=1 ← interaction candidates in d sorted by their strengths in descending order

3 Interaction Detection
Interactions can be detected by first generating an interaction ranking, then finding a cutoff on
the ranking to determine top-K interactions. Our approach to interaction ranking is to start with
interaction candidates, compute an average of their weights entering common hidden units in the
first hidden layer (see common hidden unit proof in Proposition 2), and approximate the influences
of these hidden units on the neural networks’ final output. Irrespective of interaction candidate, the
influences of hidden units can be approximated in the following way via matrix multiplications:

z(1) = |wy|>
∣∣∣W(L)

∣∣∣ · ∣∣∣W(L−1)
∣∣∣ · · · ∣∣∣W(2)

∣∣∣, (1)

where z(1) ∈ Rp1 and z(1)i is the approximated influence of hidden unit i. This approximation
satisfies upper bounds on the gradient magnitudes of hidden units (Lemma 3). We can combine this
hidden unit influence with a proposed local strength of interaction candidate I per hidden unit i:

ωi(I) = z
(1)
i µ

(∣∣∣W(1)
i,I

∣∣∣) , (2)

where W(1)
i,I are the weights associated with I from the input weight matrix, and µ (·) is an averaging

function that combines said weights into a scalar. Local strengths are to be summed across units.

Architecture We study two architectures: MLP and MLP-M. MLP is a standard multilayer perceptron,
and MLP-M is an MLP with additional univariate networks summed at the output (Figure 1). The
univariate networks are intended to discourage the modeling of univariate functions (or main effects)
away from the MLP, which can create spurious interactions using the main effects. We apply L1
regularization on the MLP portions of the architectures to suppress unimportant interacting paths.

⋯

𝑥1 𝑥2 𝑥𝑝⋯ (𝑥1, 𝑥2, … , 𝑥𝑝)

main effects feature interactions

𝑦

𝐰𝑦

𝐖(4)

𝐖(3)

𝐖(2)

𝐖(1)

Figure 1: Neural network architec-
ture for interaction detection, with
optional univariate networks

Ranking Interactions The key to efficiently detecting inter-
actions of variable order is to determine what interaction can-
didates to consider first. Thus, we design a greedy algorithm
(Algorithm 1) that generates an interaction ranking by only
considering, at each hidden unit, the top-ranked interactions of
every order, where 2 ≤ |I| ≤ p. Due to this greedy strategy, the
search space of interactions is drastically reduced while all inter-
action orders are still considered. We set the averaging function
µ (·) = min (·) based on its performance in experimental eval-
uation (Section 4.1). With this averaging function, the greedy
algorithm automatically improves the ranking of higher-order
interactions over their redundant subsets (Theorem 4).

Cutoff on Interaction Ranking We obtain a top-K cutoff on
the interaction ranking by constructing MLP-Cutoff :

cK(x) =

p∑
i=1

gi(xi) +

K∑
i=1

g′i(xI),

where gi(·) captures the main effects, g′i(·) captures the interactions, and both gi and g′i are feed-
forward networks trained jointly via backpropagation. We gradually add top-ranked interactions to
MLP-Cutoff until performance on a validation set plateaus. The exact plateau point can be found by
early stopping or other heuristic means, and we report {Ii}Ki=1 as the identified feature interactions.
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Table 1: Test suite of data-generating functions

F1(x) πx1x2
√

2x3 − sin−1(x4) + log(x3 + x5)− x9
x10

√
x7
x8
− x2x7

F2(x) πx1x2
√

2|x3| − sin−1(0.5x4) + log(|x3 + x5|+ 1) +
x9

1 + |x10|

√
x7

1 + |x8|
− x2x7

F3(x) exp |x1 − x2|+ |x2x3| − x2|x4|
3 + log(x24 + x25 + x27 + x28) + x9 +

1

1 + x210

F4(x) exp |x1 − x2|+ |x2x3| − x2|x4|
3 + (x1x4)2 + log(x24 + x25 + x27 + x28) + x9 +

1

1 + x210

F5(x)
1

1 + x21 + x22 + x23
+
√

exp(x4 + x5) + |x6 + x7|+ x8x9x10

F6(x) exp (|x1x2|+ 1)− exp(|x3 + x4|+ 1) + cos(x5 + x6 − x8) +
√
x28 + x29 + x210

F7(x) (arctan(x1) + arctan(x2))2 + max(x3x4 + x6, 0)− 1

1 + (x4x5x6x7x8)2
+

(
|x7|

1 + |x9|

)5

+

10∑
i=1

xi

F8(x) x1x2 + 2x3+x5+x6 + 2x3+x4+x5+x7 + sin(x7 sin(x8 + x9)) + arccos(0.9x10)

F9(x) tanh(x1x2 + x3x4)
√
|x5|+ exp(x5 + x6) + log

(
(x6x7x8)2 + 1

)
+ x9x10 +

1

1 + |x10|
F10(x) sinh (x1 + x2) + arccos (tanh(x3 + x5 + x7)) + cos(x4 + x5) + sec(x7x9)

Pairwise Interaction Detection A variant to our interaction ranking algorithm tests for all pairwise
interactions. We rank all pairs of features {i, j} according to their interaction strengths ω({i, j})
calculated on the first hidden layer, where again the averaging function is min (·), and ω({i, j}) =∑p1
s=1 ωs({i, j}). The higher the rank, the more likely the interaction exists.

4 Experiments
4.1 Experimental Setup
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Figure 2: A comparison of averag-
ing functions by the total number of
correct interactions ranked before
any false positives, evaluated on the
test suite (Table 1). x-axis labels
are maximum, root mean square,
arithmetic mean, geometric mean,
harmonic mean, and minimum.

Averaging Function Our proposed NID framework relies on
the selection of an averaging function (Equation 2). We exper-
imentally determined the averaging function by comparing rep-
resentative functions from the generalized mean family (Bullen
et al., 1988): maximum, root mean square, arithmetic mean,
geometric mean, harmonic mean, and minimum. To make
the comparison, we used a test suite of 10 synthetic functions,
which consist of a variety of interactions of varying order and
overlap, as shown in Table 1. We trained 10 trials of MLP and
MLP-M on each of the synthetic functions, obtained interaction
rankings with our proposed greedy ranking algorithm (Algo-
rithm 1), and counted the total number of correct interactions
ranked before any false positive. In this evaluation, we ig-
nore predicted interactions that are subsets of true higher-order
interactions because the subset interactions are redundant (Sec-
tion 2). As seen in Figure 2, the number of true top interactions
we recover is highest with the averaging function, minimum,
which we will use in all of our experiments. A simple analytical
study on a bivariate hidden unit also suggests that the minimum
is closely correlated with interaction strength (Appendix D).

Neural Network Configuration We trained feedforward networks of MLP and MLP-M architectures
to obtain interaction rankings, and we trained MLP-Cutoff to find cutoffs on the rankings. In our
experiments, all networks that model feature interactions consisted of four hidden layers with first-
to-last layer sizes of: 140, 100, 60, and 20 units. In contrast, all individual univariate networks had
three hidden layers with sizes of: 10, 10, and 10 units. All networks used ReLU activation and were
trained using backpropagation. In the cases of MLP-M and MLP-Cutoff , summed networks were
trained jointly. The objective functions were mean-squared error for regression and cross-entropy for
classification tasks. On the synthetic test suite, MLP and MLP-M were trained with L1 constants in
the range of 5e-6 to 5e-4, based on parameter tuning on a validation set. On real-world datasets, L1
was fixed at 5e-5. MLP-Cutoff used a fixed L2 constant of 1e-4 in all experiments involving cutoff.
Early stopping was used to prevent overfitting.
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Table 2: AUC of pairwise interaction strengths proposed by NID and baselines on a test suite of
synthetic functions (Table 1). ANOVA and HierLasso are deterministic.

ANOVA HierLasso AG NID, MLP NID, MLP-M
F1(x) 0.992 1.00 1± 0.0 0.970± 9.2e−3 0.995± 4.4e−3
F2(x) 0.468 0.636 0.88± 1.4e−2 0.79± 3.1e−2 0.85± 3.9e−2
F3(x) 0.657 0.556 1± 0.0 0.999± 2.0e−3 1± 0.0
F4(x) 0.563 0.634 0.999± 1.4e−3 0.85± 6.7e−2 0.996± 4.7e−3
F5(x) 0.544 0.625 0.67± 5.7e−2 1± 0.0 1± 0.0
F6(x) 0.780 0.730 0.64± 1.4e−2 0.98± 6.7e−2 0.70± 4.8e−2
F7(x) 0.726 0.571 0.81± 4.9e−2 0.84± 1.7e−2 0.82± 2.2e−2
F8(x) 0.929 0.958 0.937± 1.4e−3 0.989± 4.4e−3 0.989± 4.5e−3
F9(x) 0.783 0.681 0.808± 5.7e−3 0.83± 5.3e−2 0.83± 3.7e−2
F10(x) 0.765 0.583 1± 0.0 0.995± 9.5e−3 0.99± 2.1e−2
average 0.721 0.698 0.87± 1.4e−2 0.92*± 2.3e−2 0.92± 1.8e−2

*Note: The high average AUC of NID, MLP is heavily influenced by F6 .

Datasets We study our interaction detection framework on both simulated and real-world experiments.
For simulated experiments, we used a test suite of synthetic functions, as shown in Table 1. The test
functions were designed to have a mixture of pairwise and higher-order interactions, with varying
order, strength, nonlinearity, and overlap. F1 is a commonly used function in interaction detection
literature (Hooker, 2004; Sorokina et al., 2008; Lou et al., 2013). All features were uniformly
distributed between −1 and 1 except in F1, where we used the same variable ranges as reported in
literature (Hooker, 2004).

We use four real-world datasets, of which two are regression datasets, and the other two are binary
classification datasets. Specifically, the cal housing dataset is a regression dataset with 21k data
points for predicting California housing prices (Pace & Barry, 1997). The bike sharing dataset
contains 17k data points of weather and seasonal information to predict the hourly count of rental
bikes in a bikeshare system (Fanaee-T & Gama, 2014). The higgs boson dataset has 800k data points
for classifying whether a particle environment originates from the decay of a Higgs Boson (Adam-
Bourdarios et al., 2014). Lastly, the letter recognition dataset contains 20k data points of transformed
features for binary classification of letters on a pixel display (Frey & Slate, 1991). For all real-world
data, we use random train/valid/test splits of 80/10/10.

Baselines We compare the performance of NID to that of three baseline interaction detection methods.
Two-Way ANOVA (Wonnacott & Wonnacott, 1972) utilizes linear models to conduct significance
tests on the existence of interaction terms. Hierarchical lasso (HierLasso) (Bien et al., 2013) applies
lasso feature selection to extract pairwise interactions. Additive Groves (AG) (Sorokina et al., 2008)
is a nonparameteric means of testing for interactions by placing structural constraints on an additive
model of regression trees. AG is a reference method for interaction detection because it directly
detects interactions based on their non-additive definition.

4.2 Pairwise Interaction Detection

As discussed in Section 3, our framework NID can be used for pairwise interaction detection. To
evaluate this approach, we used datasets generated by synthetic functions F1-F10 (Table 1) that
contain a mixture of pairwise and higher-order interactions, where in the case of higher-order
interactions we tested for their pairwise subsets as in Sorokina et al. (2008); Lou et al. (2013). AUC
scores of interaction strength proposed by baseline methods and NID for both MLP and MLP-M are
shown in Table 2. We ran ten trials of AG and NID on each dataset and removed two trials with
highest and lowest AUC scores. When comparing the AUCs of NID applied to MLP and MLP-M, we
observe that the scores of MLP-M tend to be comparable or better, except the AUC for F6. On one
hand, MLP-M performed better on F2 and F4 because these functions contain main effects that MLP
would model as spurious interactions with other variables. On the other hand, MLP-M performed
worse on F6 because it modeled spurious main effects in the {8, 9, 10} interaction. Specifically,
{8, 9, 10} can be approximated as independent parabolas for each variable (shown in Appendix E). In
our analyses of NID, we mostly focus on MLP-M because handling main effects is widely considered
an important problem in interaction detection (Bien et al., 2013; Lim & Hastie, 2015; Kong et al.,
2017). Comparing the AUCs of AG and NID for MLP-M, the scores tend to close, except for F5,
F6, and F8, where NID performs significantly better than AG. This performance difference may be
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Figure 3: Heat maps of pairwise interaction strengths proposed by our NID framework on MLP-M for
datasets generated by functions F1-F10 (Table 1). Red cross-marks indicate ground truth interactions.
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Figure 4: Heat maps of pairwise interaction strengths proposed by our NID framework on MLP-M for
real-world datasets.

due to limitations on the model capacity of AG, which is tree-based. In comparison to ANOVA and
HierLasso, NID-MLP-M generally performs on par or better. This is expected because ANOVA and
HierLasso are based on quadratic models, which can have difficulty approximating the interaction
nonlinearities present in the test suite.

In Figure 3, heat maps of synthetic functions show the relative strengths of all possible pairwise
interactions as interpreted from MLP-M, and ground truth is indicated by red cross-marks. The
interaction strengths shown are normally high at the cross-marks. An exception is F6, where NID
proposes weak or negligible interaction strengths at the cross-marks corresponding to the {8, 9, 10}
interaction, which is consistent with previous remarks about this interaction. Besides F6, F7 also
shows erroneous interaction strengths; however, comparative detection performance by the baselines
is similarly poor. Interaction strengths are also visualized on real-world datasets via heat maps (Figure
4). For example, in the cal housing dataset, there is a high-strength interaction between x1 and x2.
These variables mean longitude and latitude respectively, and it is clear to see that the outcome
variable, California housing price, should indeed strongly depend on geographical location. We
further observe high-strength interactions appearing in the heat maps of the bike sharing, higgs boson
dataset, and letter datasets. For example, all feature pairs appear to be interacting in the letter dataset.
The binary classification task from the letter dataset is to distinguish letters A-M from N-Z using 16
pixel display features. Since the decision boundary between A-M and N-Z is not obvious, it would
make sense that a neural network learns a highly interacting function to make the distinction.

4.3 Higher-Order Interaction Detection

We visualize higher-order interaction detection on synthetic and real-world datasets in Figures 5 and
6 respectively. The plots correspond to the detection process as the ranking cutoff is applied (Section
3). The interaction rankings generated by NID for MLP-M are shown on the x-axes, and the blue bars
correspond to the validation performance of MLP-Cutoff as interactions are added. For example,
the plot for cal housing shows that adding the first interaction significantly reduces RMSE. We keep
adding interactions into the model until reaching a cutoff point. In our experiments, we use a cutoff
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Figure 5: MLP-Cutoff error with added top-ranked interactions (along x-axis) of F1-F10 (Table 1),
where the interaction rankings were generated by the NID framework applied to MLP-M. Red cross-
marks indicate ground truth interactions, and Ø denotes MLP-Cutoff without any interactions. Subset
interactions become redundant when their true superset interactions are found.

Ø x1
x2

x4
x6

x4
x7

x5
x6

x2
x7

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51

0.52

St
an

da
rd

ize
d 

RM
SE

cutoff

Ø 4 8 12 16 20 24 28 32 36 40 44 48
Rank Order

0.25

0.30

0.35

0.40

0.45

0.50

0.55

cutoff

Ø 3 6 9 12 15 18 21 24 27 30 33 36
Rank Order

0.090

0.095

0.100

0.105

0.110

1 
- A

UC

cutoff

Ø 13
15

8
15

8
13
15

9
15

8
9

10
11
12

8
12

9
12

14
15

4
10

9
13
15

10
15

9
|

12

15
16

8
16

1
|

16

0.00

0.02

0.04

0.06

0.08

0.10

cutoff

cal housing bike sharing higgs boson letter

Figure 6: MLP-Cutoff error with added top-ranked interactions (along x-axis) of real-world datasets
(Table 1), where the interaction rankings were generated by the NID framework on MLP-M. Ø denotes
MLP-Cutoff without any interactions.

heuristic where interactions are no longer added after MLP-Cutoff ’s validation performance reaches
or surpasses MLP-M’s validation performance (represented by horizontal dotted lines).

As seen with the red cross-marks, our method finds true interactions in the synthetic data of F1-F10

before the cutoff point. Challenges with detecting interactions are again mainly associated with F6

and F7, which have also been difficult for baselines in the pairwise detection setting (Table 2). For
the cal housing dataset, we obtain the top interaction {1, 2} just like in our pairwise test (Figure 4,
cal housing), where now the {1, 2} interaction contributes a significant improvement in MLP-Cutoff
performance. Similarly, from the letter dataset we obtain a 16-way interaction, which is consistent
with its highly interacting pairwise heat map (Figure 4, letter). For the bike sharing and higgs boson
datasets, we note that even when considering many interactions, MLP-Cutoff eventually reaches the
cutoff point with a relatively small number of superset interactions. This is because many subset
interactions become redundant when their corresponding supersets are found.

In our evaluation of interaction detection on real-world data, we study detected interactions via their
predictive performance. By comparing the test performances of MLP-Cutoff and MLP-M with respect
to MLP-Cutoff without any interactions (MLP-CutoffØ), we can measure the relative test performance
improvement obtained by including detected interactions. These relative performance improvements
are shown in Table 3 for the real-world datasets as well as four selected synthetic datasets, where
performance is averaged over ten trials per dataset. The results of this study show that a relatively
small number of interactions of variable order are highly predictive of their corresponding datasets,
as true interactions should.

We further study higher-order interaction detection of our NID framework by comparing it to AG
in both interaction ranking quality and runtime. To assess ranking quality, we design a metric,
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Table 3: Test performance improvement when adding top-K interactions from MLP-M to MLP-Cutoff
for real-world datasets and select synthetic datasets. Here, the median K̄ excludes subset interactions,
and ¯|I| denotes average interaction cardinality. RMSE values are standard scaled.

Dataset p
Relative Performance

Improvement
Absolute Performance

Improvement K̄ ¯|I|
cal housing 8 99%± 4.0% 0.09± 1.3e−2 RMSE 2 2.0
bike sharing 12 98.8%± 0.89% 0.331± 4.6e−3 RMSE 12 4.7
higgs boson 30 98%± 1.4% 0.0188± 5.9e−4 AUC 11 4.0
letter 16 101.1%± 0.58% 0.103± 5.8e−3 AUC 1 16
F3(x) 10 104.1%± 0.21% 0.672± 2.2e−3 RMSE 4 2.5
F5(x) 10 102.0%± 0.30% 0.875± 2.2e−3 RMSE 6 2.2
F7(x) 10 105.2%± 0.30% 0.2491± 6.4e−4 RMSE 3 3.7
F10(x) 10 105.5%± 0.50% 0.234± 1.5e−3 RMSE 4 2.3
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Figure 7: Comparisons between AG and NID in higher-order interaction detection. (a) Comparison
of top-ranked recall at different noise levels on the synthetic test suite (Table 1), (b) comparison of
runtimes, where NID runtime with and without cutoff are both measured. NID detects interactions
with top-rank recall close to the state-of-the-art AG while running orders of magnitude times faster.

top-rank recall, which computes a recall of proposed interaction rankings by only considering those
interactions that are correctly ranked before any false positive. The number of top correctly-ranked
interactions are then divided by the true number of interactions. Because subset interactions are
redundant in the presence of corresponding superset interactions, only such superset interactions can
count as true interactions, and our metric ignores any subset interactions in the ranking. We compute
the top-rank recall of NID on MLP and MLP-M, the scores of which are averaged across all tests in
the test suite of synthetic functions (Table 1) with 10 trials per test function. For each test, we remove
two trials with max and min recall. We conduct the same tests using the state-of-the-art interaction
detection method AG, except with only one trial per test because AG is very computationally expensive
to run. In Figure 7a, we show top-rank recall of NID and AG at different Gaussian noise levels, and in
Figure 7b, we show runtime comparisons on real-world and synthetic datasets. As shown, NID can
obtain similar top-rank recall as AG while running orders of magnitude times faster.

4.4 Limitations

In higher-order interaction detection, our NID framework can have difficulty detecting interactions
from functions with interlinked interacting variables. For example, a clique x1x2 +x1x3 +x2x3 only
contains pairwise interactions. When detecting pairwise interactions (Section 4.2), NID often obtains
an AUC of 1. However, in higher-order interaction detection, the interlinked pairwise interactions
are often confused for single higher-order interactions. This issue could mean that our higher-order
interaction detection algorithm fails to separate interlinked pairwise interactions encoded in a neural
network, or the network approximates interlinked low-order interactions as higher-order interactions.
Another limitation of our framework is that it sometimes detects spurious interactions or misses
interactions as a result of correlations between features; however, correlations are known to cause
such problems for any interaction detection method (Sorokina et al., 2008; Lou et al., 2013).

5 Conclusion
We presented our NID framework, which detects statistical interactions in data without searching
an exponential solution space of interaction candidates. The framework detects interactions by
interpreting the trained weights of a feedforward neural network.
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A Proof and Discussion for Proposition 2

Given a trained feedforward neural network as defined in Section 2, we can construct a directed acyclic
graph G = (V,E) based on non-zero weights as follows. We create a vertex for each input features
and hidden units in the neural network: V = {v`,i|∀i, `}, where v`,i be the vertex corresponding to
the i-th hidden unit in the `-th layer. Note that the final output y is not included. We create edges
based on the non-zero entries in the weight matrices, i.e., E = {(v`−1,i, v`,j) |W`

j,i 6= 0,∀i, j, `}.
Note that under the graph representation, the value of any hidden unit is a function of parent hidden
units. We will also use vertices and hidden units interchangeably.

In feedforward neural networks with nonlinear activation functions, any interacting features must
follow strongly weighted connections to a common hidden unit before the final output. That is, in the
corresponding directed graph, interacting features will share at least one common descendant. The
key observation is that non-overlapping paths in the network are aggregated via weighted summation
at the final output without creating any interactions between features. The statement is rigorized in
the following proposition with a proof. The reverse of this statement, that a common descendant will
create an interaction among input features, holds true in most cases.
Proposition 2 (Interactions at Common Hidden Units). Consider a feedforward neural network with
input feature xi, i ∈ [p], where y = ϕ (x1, . . . , xp). For any interaction I ⊂ [p] in ϕ (·), there exists
a vertex vI in the associated directed graph such that I is a subset of the ancestors of vI at the input
layer (i.e., ` = 0).

Proof. We prove Proposition 2 by contradiction.

Let I be an interaction where there is no vertex in the associated graph which satisfies the condition.
Then, for any vertex vL,i at the L-th layer, the value fi of the corresponding hidden unit is a function
of its ancestors at the input layer Ii where I 6⊂ Ii.
Next, we group the hidden units at the L-th layer into non-overlapping subsets by the first missing
feature with respect to the interaction I. That is, for element i in I, we create a index set Si ∈ [pL]:

Si = {j ∈ [pL]|i 6∈ Ij and ∀i′ < i, j 6∈ Si′}.

Note that the final output of the network is a weighed summation over the hidden units at the L-th
layer:

ϕ (x) = by +
∑
i∈I

∑
j∈Si

wyj fj
(
xIj
)
,

Since
∑
j∈Si w

y
j fj

(
xIj
)

is not a function of xi, we have thatϕ (·) is a function without the interaction
I, which contradicts our assumption.

The reverse of this statement, that a common descendant will create an interaction among input
features, holds true in most cases. The existence of counterexamples is manifested when early
hidden layers capture an interaction that is negated in later layers. For example, the effects of two
interactions may be directly removed in the next layer, as in the case of the following expression:
max{w1x1 + w2x2, 0} −max{−w1x1 − w2x2, 0} = w1x1 + w2x2. Such an counterexample is
legitimate; however, due to random fluctuations, it is highly unlikely in practice that the w1s and the
w2s from the left hand side are exactly equal.

B Proof for Lemma 3

We show that our definition of hidden unit influence (Equation 1) satisfies upper bounds on the
gradient magnitudes of hidden units by proving it computes Lipschitz constants for corresponding
units. Gradients have been commonly used as variable importance measures in neural networks,
especially input gradients which compute directions normal to decision boundaries (Ross et al., 2017;
Goodfellow et al., 2015; Simonyan et al., 2013). Thus, an upper bound on the gradient magnitude
approximates how important the variable can be.
Lemma 3 (Neural Network Lipschitz Estimation). Let the activation function φ (·) be a 1-Lipschitz
function. Then the output y is z(`)i -Lipschitz with respect to h(`)i .
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Proof. For non-differentiable φ (·) such as the ReLU function, we can replace it with a series of
differentiable 1-Lipschitz functions that converges to φ (·) in the limit. Therefore, without loss of
generality, we assume that φ (·) is differentiable with |∂xφ(x)| ≤ 1. We can take the partial derivative
of the final output with respect to h(`)i , the i-th unit at the `-th hidden layer:

∂y

∂h
(`)
i

=
∑

j`+1,...,jL

∂y

∂h
(L)
jL

∂h
(L)
jL

∂h
(L−1)
jL−1

· · ·
∂h

(`+1)
j`+1

∂h
(`)
i

=wy>diag(φ̇(L))W(L) · · · diag(φ̇(`+1))W(`+1),

where φ̇(`) ∈ Rp` is a vector that

φ̇
(`)
k = ∂xφ

(
W

(`)
k,:h

(`−1) + b
(`)
k

)
.

We can conclude the Lemma by proving the following inequality:∣∣∣∣∣ ∂y∂h
(`)
i

∣∣∣∣∣ ≤ |wy|>
∣∣∣W(L)

∣∣∣ · · · ∣∣∣W(`+1)
:,i

∣∣∣ = z
(`)
i .

The left-hand side can be re-written as∑
j`+1,...,jL

wyjL φ̇
(L)
jL
W

(L)
jL,jL−1

φ̇
(L−1)
jL−1

· · · φ̇(`+1)
j`+1

W
(`+1)
j`+1,i

.

The right-hand side can be re-written as∑
j`+1,...,jL

∣∣wyjL∣∣∣∣∣W (L)
jL,jL−1

∣∣∣ · · · ∣∣∣W (`+1)
j`+1,i

∣∣∣.
We can conclude by noting that |∂xφ(x)| ≤ 1.

C Proof for Theorem 4

In addition to efficiency, a benefit of Algorithm 1 with µ (·) = min (·) is that it automatically improves
the ranking of a higher-order interaction over its redundant subsets. This allows the higher-order
interaction to have a better chance of ranking above any false positives and being captured in the
cutoff stage. We justify this improvement by proving Theorem 4 under a mild assumption.
Theorem 4 (Improving the ranking of higher-order interactions). Let R be the set of interactions
proposed by Algorithm 1, let I ∈ R be a d-way interaction where d ≥ 3, and let S be the set of subset
(d − 1)-way interactions of I where |S| = d. Assume that for any hidden unit j which proposed
s ∈ S ∩R, I will also be proposed at the same hidden unit, and ωj(I) > 1

dωj(s). Then, one of the
following must be true: a) ∃s ∈ S ∩R ranked lower than I, i.e., ω(I) > ω(s), or b) ∃s ∈ S where
s /∈ R.

Proof. Suppose for the purpose of contradiction that S ⊆ R and ∀s ∈ S, ω(s) ≥ ω(I). Because
ωj(I) > 1

dωj(s),

ω(I) =
∑

s∈S∩R

∑
j propose s

zjωj(I) >
1

d

∑
s∈S∩R

∑
j propose s

zjωj(s) =
1

d

∑
s∈S∩R

ω(s).

Since ∀s ∈ S, ω(s) ≥ ω(I),

1

d

∑
s∈S∩R

ω(s) ≥ 1

d

∑
s∈S∩R

ω(I)

Since S ⊆ R, |S ∩ R| = d. Therefore,
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1

d

∑
s∈S∩R

ω(I) ≥ 1

d
ω(I)d ≥ ω(I),

which is a contradiction.

Under the noted assumption, the theorem in part a) shows that a d-way interaction will improve over
one its d−1 subsets in rankings as long as there is no sudden drop from the weight of the (d−1)-way
to the d-way interaction at the same hidden units. We note that the improvement extends to b) as well,
when d = |S ∩ R| > 1.

D Pairwise Interaction Strength via Quadratic Approximation

We provide an interaction strength analysis on a bivariate ReLU function: max{α1x1 + α2x2, 0},
where x1, x2 are two variables and α1, α2 are the weights for this simple network. We quantify the
strength of the interaction between x1 and x2 with the cross-term coefficient of the best quadratic
approximation. That is,

β0, . . . , β5 = argmin
βi,i=0,...,5

∫∫ 1

−1

[
β0 + β1x1 + β2x2 + β3x

2
1 + β4x

2
2 + β5x1x2

−max{α1x1 + α2x2, 0}
]2
dx1 dx2.

Then for the coefficient of interaction {x1, x2}, β5, we have that,

|β5| =
3

4

(
1− min{α2

1, α
2
2}

5 max{α2
1, α

2
2}

)
min{|α1|, |α2|}. (3)

Note that the choice of the region (−1, 1)× (−1, 1) is arbitrary: for a larger region (−c, c)× (−c, c)
with c > 1, we found that |β5| scales with c−1. Note that the factor before min{|α1|, |α2|} in
Equation (3) is almost a constant with less than 20% fluctuation. This analysis suggests that the
interaction strength of a bivariate ReLU function can be well-modeled by the minimum value between
|α1| and |α2|.

E Spurious Main Effect Approximation

In the synthetic function F6 (Table 2), the {8, 9, 10} interaction,
√
x28 + x29 + x210, can be approxi-

mated as main effects for each variable x8, x9, and x10 when at least one of the three variables is
close to −1 or 1. Note that in our experiments, these variables were uniformly distributed between
−1 and 1.

For example, let x10 = 1 and z2 = x28 + x29, then by taylor series expansion at z = 0,√
z2 + 1 ≈ 1 +

1

2
z2 = 1 +

1

2
x28 +

1

2
x29.

By symmetry under the assumed conditions,√
x28 + x29 + x210 ≈ c+

1

2
x28 +

1

2
x29 +

1

2
x210,

where c is a constant.

In Figure 8, we visualize the x8, x9, x10 univariate networks of a MLP-M (Figure 1) that is trained
on F6. The plots confirm our hypothesis that the MLP-M models the {8,9,10} interaction as spurious
main effects with parabolas scaled by 1

2 .
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Figure 8: Response plots of an MLP-M’s univariate networks corresponding to variables x8, x9, and
x10. The MLP-M was trained on data generated from synthetic function F6 (Table 2). Note that the
plots are subject to different levels of bias from the MLP-M’s main multivariate network.
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