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Abstract

Saliency methods aim to explain the predictions of deep neural networks. These
methods lack reliability when the explanation is sensitive to factors that do not
contribute to the model prediction. We use a simple and common pre-processing
step —adding a constant shift to the input data— to show that a transformation
with no effect on the model can cause numerous methods to incorrectly attribute.
In order to guarantee reliability, we posit that methods should fulfill input invari-
ance, the requirement that a saliency method mirror the sensitivity of the model
with respect to transformations of the input. We show, through several examples,
that saliency methods that do not satisfy input invariance result in misleading at-
tribution.

1 Introduction

While considerable research has focused on discerning the decision process of neural networks
[2, 11, 3, 16, 13, 1, 15, 7, 6, 17, 14, 12, 5], there remains a trade-off between model complexity and
interpretability. Research to address this tension is urgently needed; reliable explanations build trust
with users, help identify points of model failure and remove barriers to entry for the deployment of
deep neural networks in domains like health care, security and transportation.

In deep neural networks, data representation is delegated to the model and subsequently we cannot
generally say in an informative way what led to a model prediction. Instead, saliency methods aim
to infer insights about the f(x) learnt by the model by ranking the explanatory power of constituent
inputs. While unified in purpose, these methods are surprisingly divergent and non-overlapping in
outcome. Evaluating the reliability of these methods is complicated by a lack of ground truth, as
ground truth would depend upon full transparency into how a model arrives at a decision — the very
problem we are trying to solve for in the first place.

Given the need for a quantitative method of comparison, several properties such as completeness,
implementation invariance and sensitivity have been articulated as desirable to ensure that saliency
methods are reliable [1, 14]. Implementation invariance, proposed as an axiom for attribution meth-
ods by [14], is the requirement that functionally equivalent networks (models with different archi-
tectures but equal outputs for all inputs), always attribute in an identical way.

This work posits that a second invariance axiom, which we term input invariance, needs to be
satisfied to ensure reliable interpretation of the input’s contribution to the model prediction. In-
put invariance requires that the saliency method mirror the sensitivity of the model with respect to
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Figure 1: Integrated gradients and Deep Taylor Decomposition determine input attribution relative
to a chosen reference point. This choice determines the vantage point for all subsequent attribution.
Using two example reference points for each method we demonstrate that changing the reference
causes the attribution to diverge. The attributions are visualized in a consistent manner with the IG
paper [14]. Visualisations were made using ImageNet data. [8] and the VGG16 architecture [11].

transformations of the input. We demonstrate that numerous methods do not satisfy input invari-
ance using a simple transformation – a constant shift of the input – that changes the attribution of
these methods but does not affect the model prediction or weights. Our results demonstrate that
explanations of a networks predictions can be purposefully manipulated using surprisingly simple
transformations to be misleading. This work is motivated by an understanding that saliency methods
are highly valued tools for gaining intuition about a network. Determining points of failure is a nec-
essary step for knowledgeable use of these tools as well as a pre-requisite for domains like medicine
where the incorrect classification of an input as salient carries a high cost.

In this work we:

• introduce the axiom input invariance and show, using a simple constant shift in the input,
that certain saliency methods do not satisfy this property. (See Fig. 3).

• demonstrate using MNIST that we can purposefully force misleading attribution (See Fig. 4
and Fig. 5).

• show that "reference point" methods – Integrated gradients and the Deep Taylor
Decomposition– have diverging attribution satisfy input invariance contingent on the choice
of reference and the type of transformation considered (See Fig. 1).

• propose data normalization as a way to ensure that some methods satisfy input invariance
for the type of transformation considered. Discuss the need for wider research as normaliza-
tion does not systematically guarantee reliable attribution for all possible transformations.

In Section 2, we detail our experiment framework. In Section 3, we determine that while the model
is invariant to the input transformation considered, several saliency methods attribute to the mean
shift. In Section 4 we discuss "reference point" methods and illustrate the importance of choosing
an appropriate reference before discussing some directions for future research in Section 5.

2 The Model is Invariant to a Constant Shift in Input

We show that, by construction, the bias of a neural network compensates for the constant shift
resulting in two networks with identical weights and predictions.

We compare the attribution across two networks, f1(x) and f2(x). f1(x) is a network trained on
input xi1 that denotes sample i from training set X1. The classification task of network 1 is:

f1(x
i
1) = yi,
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f2(x) is a network that predicts the classification of a transformed input xi2. The relationship be-
tween xi1 and xi2 is the addition of constant vector m2:

∀i,xi2 = xi1 +m2.

Network 1 and 2 differ only by construction. Consider the first layer neuron before non-linearity in
f1(x):

z = wTx1 + b1.

We alter the biases in the first layer neuron by adding the mean shift m2. This now becomes Network
2:

b2 = b1 −wTm2.

As a result the first layer activations are the same for f1(x) and f2(x):

z = wTx2 + b2 = wTx1 +wTm2 + b1 −wTm2.

Note that the gradient with respect to the input remains unchanged as well:

∂f1(x
i
1)

∂xi1
=
∂f2(x

i
2)

∂xi2
.

We have shown that Network 2 cancels out the mean shift transformation. This means that f1(x) and
f2(x) have identical weights and produce the same output for all corresponding samples, xi1 ∈ X1,
xi2 ∈ X2:

∀i, f1(xi1) = f2(x
i
2).

2.1 Experimental Setup

Now, we describe our experiment setup to evaluate the input invariance of a set of saliency methods.
Most saliency research to date has centered on convolutional neural networks (CNN). In this work,
we also evaluate input invariance using a CNN. Network 1 is a 3 layer multi-layer perceptron with
1024 ReLu-activated neurons each. Network 1 classifies MNIST image inputs in a [0,1] encoding.
We consider a negative constant shift of m2 = −1; Network 2 classifies MNIST image inputs in
a [-1,0] MNIST encoding. The first network is trained for 10 epochs using mini-batch stochastic
gradient descent (SGD). The final accuracy is 98.3% for both3. In 3.1 we introduce the saliency
methods we evaluate.

3 The (in)sensitivity of saliency methods to mean shifts

In 3.1 we introduce key approaches to the classification of inputs as salient and the saliency methods
we evaluate. In 3.2 we find that gradient and signal methods satisfy input invariance. In 3.3 we find
that all attribution methods considered have points of failure.

3.1 Saliency Methods Considered

Saliency methods broadly fall into three different categories:

1. Gradients (Sensitivity) [2, 10]) shows how a small change to the input affects the classifi-
cation score for the output of interest.

2. Signal methods such as DeConvNet [16], Guided BackProp [13] and PatternNet [5] aim
to isolate input patterns that stimulate neuron activation in higher layers.

3Although there is a gap between this and the state of art, the gap does not significantly influence our
findings.
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Figure 2: Evaluating the sensitivity of gradient and signal methods using MNIST with a [0,1] en-
coding for network f1 and a [-1,0] encoding for network f2. Both raw gradients and signal methods
satisfy input invariance by producing identical saliency heatmaps for both networks.

3. Attribution methods such as Deep-Taylor Decomposition [6] and Integrated Gradients
[14] assign importance to input dimensions by decomposing the value yj at an output neu-
ron j into contributions from the individual input dimensions:

sj = A(x)j .

sj is the decomposition into input contributions and has the same number of dimensions
as x, A(x)j signifies the attribution method applied to output j for sample x. Attribution
methods are distinct from gradients because of the insistence on completeness; the sum of
all attributions should be approximately equal to the original output yi.

We consider the input invariance of each category separately (by evaluating raw gradients, Guided-
Backprop, PatternNet, Integrated Gradients and Deep Taylor Decomposition).

The experiment setup and methodology is as described in Section 2. Each method is evaluated
by comparing the saliency heatmaps for the predictions of network 1 and 2, where xi2 is simply
the mean shifted input (xi1 + m2). A saliency method that satisfies input invariance will produce
identical saliency heatmaps for Network 1 and 2 despite the constant shift in input.

3.2 Gradient and Signal Methods Satisfy Input Invariance

Gradient and signal methods are not sensitive to a constant shift in inputs. In Fig. 2 raw gradients,
PatternNet (PN), [5] and GuidedBackprop (GB) [13] produce identical saliency heatmaps for both
networks. Intuitively, gradient, PN and GB satisfy input invariance given that we are comparing two
networks with an identical f(x). All three methods determine attribution entirely as a function of
the network/pattern weights and thus will be input invariant as long as we are comparing networks
with identical weights.

In the same manner, we can say that these methods will not be input invariant when comparing
networks with different weights (even if we consider models with different architectures but identical
predictions for every input).

3.3 The Sensitivity of Attribution Methods

We evaluate the following attribution methods: gradient times input (GI), integrated gradients
(IG, [14]) and the deep-taylor decomposition (DTD, [6]).

In 3.3.1 we find GI to be sensitive to constant shifts in the input. In 3.3.2 we group discussion of IG
and DTD under "reference point" methods because both require that attribution is done in relation
to a chosen reference. We find that satisfying input invariance depends upon the choice of reference
point and the type of constant shift to the input.

3.3.1 Gradient Times Input is Sensitive to Mean Shift of Inputs

We find that the multiplication of raw gradients by the image fails to satisfy input invariance. In
Fig. 3 GI produces different saliency heatmaps for both networks.
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Figure 3: Evaluation of attribution method sensitivity using MNIST with a [0,1] encoding for net-
work f1 and a [-1,0] encoding for network f2. Gradient x Input, IG and DTD with a zero reference
point, which is equivalent to LRP [1, 6], do not satisfy input invariance and produce different attri-
butions for each network. IG with a black image reference point and DTD with a PA reference point
are not sensitive to a mean shift in input.

In 3.2 we determined that a saliency heatmap of gradients gradient does satisy input invariance. This
breaks when the gradients are multiplied with the input image.

sj =
∂f(x)j
∂x

� x.

Multiplying by the input fails to satisfy input invariance because the input shift is carried through
to final attribution. Naive multiplication by the input, as noted by [12], also constrains attribution
without justification to inputs that are not 0.

3.3.2 Reliability of Reference Point Methods Depends Upon the Choice of Reference

Both Integrated Gradients IG, [14] and Deep Taylor Decomposition DTD, [6] determine the impor-
tance of inputs relative to a reference point. DTD refers to this as the root point and IG terms the
reference point a baseline. The choice of reference point is not determined a priori by the method
and is instead a hyperparameter of the attribution task.

The choice of reference point determines all subsequent attribution. In Fig. 1 IG and DTD show
different attribution depending on the choice of reference point. We show that IG and DTD only
satisfy input invariance contingent on the choice of reference point and the type of transformation
considered.

Integrated gradients (IG)( [14]) attributes the predicted score to each input with respect to a
baseline x0. This is achieved by constructing a set of inputs interpolating between the baseline and
the input.

sj = (x− x0)�
∫ 1

α=0

∂f(x0 + α(x− x0))i
∂x

dα

Since this integral cannot be computed analytically, it is approximated by a finite sum ranging over
α ∈ [0, 1].

sj = (x− x0)�
∑
α

∂f(x0 + α(x− x0))

∂x
.

We evaluate whether two possible IG reference points satisfy input invariance. Firstly, we consider
an image populated uniformly with the minimum pixel from the dataset (x0 = min(x)) (black im-
age) and a zero vector image. In Fig. 3, a black image reference point produces identical attribution
heatmaps whereas a zero vector reference point is not input invariant.

IG using a black image reference point is not sensitive to the constant shift in input because x0 =
min(x) is determined after the mean shift of the input so the difference between x and x0 remains
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Figure 4: Evaluation of attribution method sensitivity using MNIST. Gradient x Input, all IG ref-
erence points and DTD with a LRP reference point do not satisfy input invariance and produce
different attributions for each network. DTD with a PA reference point is not sensitive to the trans-
formation of the input.

the same for both networks. In network 1 this is (x1) − min(x1) and in network 2 this is (x2 +
m2)−min(x2 +m2).

IG with a zero vector reference point fails to satisfy input invariance because while the difference in
network 1 is (x1 − x0), the difference in network 2 becomes (x2 +m2)− x0.

It is possible to construct a constant vector that will break the reliability of using a black image as a
baseline. We consider a transformation xi2 of the input xi1 where the constant vector ( m2) added to
xi1 is an image of a checkered box. Consistent with Section 2 the relationship between xi1 and the
transformed input xi2 is the addition of the checkered box image vector m2.

In Fig. 4 shows that we are able to manipulate the attribution heatmap of an MNIST prediction so
that x̂, an image of checkered boxes, appears for all reference points except for PA. This constant
vector transformation causes all IG reference points to fail to satisfy input invariance.

Deep Taylor Decomposition (DTD) determines attribution relative to a reference point neuron.
DTD can satisfy input invariance if the right reference point is chosen. In the general formulation,
the attribution of an input neuron j is initialized to be equal to the output of that neuron. The
attribution of other output neurons is set to zero. This attribution is backpropagated to input neurons
using the following distribution rule where slj is the attribution assigned to neuron j in layer l:

soutputj = y, soutputk 6=j = 0, sl−1,j =
w � (x− x0)

wTx
slj .

We evaluate the input invariance of DTD using a reference point determined by Layer-wise Rele-
vance Propagation (LRP,[1]) and PatternAttribution (PA). In Fig. 3, DTD satisfies input invariance
when using a reference point defined by PA however fails to satisfy input invariance when using a
reference point defined by LRP.

LRP is sensitive to the input shift because it is a case of DTD where a zero vector is chosen as the
root point.2. The back-propagation rule becomes:

soutputj = y, soutputk 6=i = 0, sl−1,j =
w � x

wTx
slj .

sl−1,j depends only upon the input and so attribution will change between network 1 and 2 because
x1 andx2 differ by a constant vector.

PatternAttribution (PA) satisfies input invariance because the reference point x0 is defined as the
natural direction of variation in the data [5]. This natural direction is determined by the covariance
of the data and thus compensates explicitly for the constant vector shift of the input. Therefore it is
by construction input invariant.

2This case of DTD is called the z − rule and can be shown to be equivalent to Layer-wise Relevance
Propagation [1, 6]. Under specific circumstances, LRP is also equivalent to the gradient times input [4, 9].
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The PA root point is:
x0 = x− awTx (1)

where aTw = 1.

In a linear model:

a =
cov[x, y]

wT cov[x, y]
. (2)

For neurons followed by a ReLu non-linearity the vector a accounts for the non-linearity and is
computed as:

a =
E+[x, y]− E+[x]E[y]

wT (E+[x, y]− E+[x]E[y])
.

Here E+ denotes the expectation taken over values where y is positive.

PA reduces to the following step:

soutputi = y, soutputj 6=i = 0, sl−1,i = w � asli.

The vector a depends upon covariance and thus compensates the mean shift of the input. The
attribution for both networks is thus identical.

4 The Importance of Choosing an Appropriate Reference Point

IG and DTD satisfy input invariance when certain reference points or/and input transformations are
considered. The choice of reference point is also important because it determines all subsequent
attribution. In fig.1 attribution visually diverges for the same method if multiple reference points are
considered.

A reasonable reference point choice will naturally depend upon domain and task. For example, [14]
suggests that a black image is a natural reference point for image recognition tasks whereas a zero
vector is a reasonable choice for text based networks. However, we have shown that the choice of
reference point can lead to very different results. Unintentional misrepresentation of the model is
very possible when the implications of attribution using a given reference point are unclear. Thus far,
we have discussed attribution for image recognition tasks with the assumption that pre-processing
steps are known and visual inspection of the points determined to be salient is possible. For audio
and language based models where visual inspection is difficult or inappropriate, identifying failure
points or how attribution varies under different baselines poses a challenge.

If we cannot determine the implications of reference point choice, we are limited in our ability to say
anything about the reliability of the method. To demonstrate this point, we construct a constant shift
of the input that takes advantage of the input invariance points of failure we have already identified.

In the following experiment, we construct a constant vector shift using a hand drawn image of cat.
Network 1 is the same as introduced in Section 2. The raw image can be seen in Fig. 5. Consistent
with Section 2 the relationship between xi1 and the transformed input xi2 is the addition of a constant
vectors m2.

∀i,xi2 = xi1 +m2.

We construct m2 by choosing a desired attribution ŝ that should be assigned to a specific sample x̂
when the gradient is multiplied with the input.

m2 is constructed to ensure that the specific xi2 receives the desired attribution as follows:

m2 =
ŝ

∂f1(x)
∂x

− x.

We clip the shift to be within [-.3,.3] so that the MNIST digit is still visible, if we do not clip the end
attribution would only show the cat.
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Figure 5: Evaluation of attribution method sensitivity using MNIST. Gradient x Input, IG with both
a black and zero reference point and DTD with a LRP reference point, do not satisfy input invariance
and produce different attribution for each network. DTD with a PA reference point is not sensitive
to the transformation of the input.

In Fig. 5 transforming the input in this manner allows purposeful misrepresentation of the attribution.
All methods, except for PA, fail to satisfy input invariance and visibly show a cat as the explanation
for an MNIST prediction.

How can we avoid breaks in input invariance? PA is invariant to the input transformations considered
because it relies on the covariance of the data which compensates for the shift. If the data had been
normalized prior to attribution many of the methods considered would still satisfy input invariance.
However, this is far from a systematic treatment of the reference point selection as there are input
transformations outside of our experiment scope where this would not be sufficient. We believe an
important research agenda is furthering the understanding of reference point choice that guarantee
reliability without relying on case-by-case solutions.

5 Conclusion

Saliency methods are powerful tools to gain intuition about our model. We show that numerous
methods fail to attribute correctly when a constant vector shift is applied to the input. More worry-
ingly, we show that we are able to purposefully create a deceptive explanation of the network using
a hand drawn cat image.

We introduce input invariance as a prerequisite for reliable attribution. Our treatment of input in-
variance is restricted to demonstrating that there is at least one input transformation (a constant
vector shift to the input) that causes numerous saliency methods to attribute incorrectly. This work
is motivated by our belief that saliency methods remain valuable tools to gain intuition about the
network. Understanding where they fail equips researchers with the tools to appropriately weigh the
explanations these models provide.

Guaranteeing the reliability of saliency methods is crucial in tasks where visual inspection of results
is not easy or the costs of incorrect attribution is high. For example, human inspection of the attri-
bution for an image recognition task would catch the cat attack experiment (described in section 4).
However, it is unclear how we would catch the same purposeful manipulation or an unintentional
misrepresentation in a language or audio model where inspection is not possible or opaque.

Determining how saliency methods fail is an important stepping stone to understanding where and
how we should use these methods. An urgent research agenda, and a requirement for the use of deep
neural networks in domains like medicine, is evaluating which methods and/or reference points
consistently guarantee reliability for all possible transformations.
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