
Diagnostic classification and symbolic guidance to
understand and improve recurrent neural networks

Dieuwke Hupkes
University of Amsterdam

Amsterdam, 1098 XX
dieuwkehupkes@gmail.com

Willem Zuidema
University of Amsterdam

Amsterdam, 1098 XX
w.h.zuidema@uva.nl

Abstract

This paper describes a search through a variety of methods to inspect and understand
the internal dynamics of gated recurrent neural networks, using a task focusing
on a key feature of language: hierarchical compositionality of meaning. We study
both gated recurrent units and long short term memory networks with a technique
called diagnostic classification, in which a simple neural meta-model is trained
to qualitatively evaluate hypotheses about the information that is encoded in the
hidden state of a trained network. Using this method, we analyse the hidden
layer activations, but also the gates of trained networks. We explore the potential
limits of diagnostic classification using not only the accuracy of the resulting
diagnostic classifiers, but also studying their weights to understand where and how
information is encoded. As a result, we develop a detailed understanding of the
computations implemented by the networks to execute their task, which we then
utilise to improve their performance with a new training regime we call symbolic
guidance. This regime uses symbolically generated targets that are specifically
designed to leverage our knowledge about the inherent bias of the networks and
leads to a clear improvement against the best previous model.

1 Introduction

In many subfields of natural language processing, the current state-of-the-art models are all based
on artificial neural network architectures [e.g. Bahdanau et al., 2015, Sutskever et al., 2014]. Until
recently, the research leading to these successes primarily involved developing increasingly sophis-
ticated architectures and training methods, often also resulting in large increases in the number of
parameters. Our understanding of what the resulting models actually encode, however, remains poor.
Opening the black box of these models is a crucial topic of research, both for the usefulness of these
models as models of cognition, and for developing new training methods that more appropriately
address their inherent biases.

In this paper, we present an exploration of methods to increase our understanding of neural models,
focusing on a key linguistic topic: (hierarchical) compositionality of meaning. As such, this paper
can be seen as a joint effort of developing and evaluating methods to inspect the dynamics of
recurrent neural networks, while increasing our understanding of how they can implement hierarchical
compositionality. To do so, we will employ the method of diagnostic classification [Hupkes et al.,
2017], in which hypotheses about what is encoded in the hidden state of a neural network are tested
by training additional neural classifiers to predict features following from these hypotheses. We profit
from our increased understanding by using symbolic guidance, a new approach that exploits the most
fruitful hypotheses according to diagnostic classification to guide the network in the learning process.

We first describe our initial experiments in Section 2. In Section 3, we present a thorough analysis of
the internal dynamics of the trained networks. In Section 4, we present symbolic guidance, our novel

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

training method. Throughout the paper, we provide several suggestions for further research, and we
finish with a discussion on what our search through methods of analysis has brought us by focusing
on the question central to this workshop: What now?

2 Hierarchical compositionality in recurrent neural networks

We work with the toy task of processing sentences from a lexical arithmetic language, consisting
of spelled out, nested, arithmetic expressions [for more details, see Veldhoen et al., 2016]. These
sentences comprise sequences of brackets, operators (+ and -), and digits ({-19,...,19}), that are
all represented by 2-dimensional word embeddings. The deep hierarchical structure and symbolic
nature of this task allows us to isolate the aspect of hierarchical compositionality, while providing us
with the luxury of formulating clear symbolic hypotheses about how they may be processed, which
is usually not possible when working with natural data. A formal description of the grammatical
sentences of this language can be found in Figure 1.

Form Meaning
L1 {minus ten, minus nine, . . . , nine, ten} {-10, -9, . . . , 9, 10}

Lk
{(lm x ln) | lm∈Lm, ln∈Ln, x ∈ {+, −},

m+ n = k}
〈lm〉x 〈 lm〉

Figure 1: Formal description of the sentences s in the arithmetic language and their meanings 〈s〉.

In a first series of experiments, we assess to what extent gated recurrent networks can learn to
correctly process the deep hierarchical structure of sentences from the arithmetic language, without
being provided any explicit feedback on this structure.1 We now first provide a global explanation
of the workings of the two models that are our focus of study: Long Short Term Memory networks
[LSTMs, Hochreiter and Schmidhuber, 1997], and Gated Recurrent Units [GRUs, Cho et al., 2014].

2.1 Models

Gated neural networks are an extension of simple recurrent neural networks [SRNs, Elman, 1990],
proposed to mitigate vanishing or exploding gradient problems that arise when recurrent networks
are trained with backpropagation through time [Hochreiter and Schmidhuber, 1997]. In this paper,
we focus on two common versions of recurrent neural networks: LSTMs and GRUs.

LSTM An LSTM unit has three gates, that together modulate the recurrent information flow in
the network. The gate values are computed considering the previous hidden layer activation and the
current input:

ft = σ(Wfxt +Ufht−1 + bf) (1)
it = σ(Wixt +Uiht−1 + bi) (2)
ot = σ(Woxt +Uoht−1 + bo) (3)

where σ denotes the logistic sigmoid function. The forget gate ft ∈ Rh and the input gate it ∈ Rh

together determine to what extent the content of the memory ct ∈ Rh cell is updated:
ct = ft � ct−1 + it � tanh(Wcxt+Ucht−1+bc) (4)

where � denotes the element wise product. The forget gate regulates how much of its previous
activation is memorised, whereas the input gate determines how much of the recurrent activation is
taken into account. With a completely closed forget gate (ft = 0) and a completely open input gate
(it = 1) , the activation of the memory cell matches the standard SRN activation; closing the input
gate and opening the forget gate has as result that the previous memory activation is retained. The
final hidden layer activation is modulated by the output gate:

ht = ot � tanh(ct) (5)
The output gate can thus completely reset the hidden state of the network if it is set to 0, while setting
it to 1 results in merely copying the memory content.

1The network is trained using a mean squared error loss of a linear output unit against the meaning of the
expression (i.e. its outcome) as target.

2

GRU Contrary to an LSTM unit, a GRU has only 2 gates, that are computed analogously to the
LSTM gates, but have different functions.

rt = σ(Wrxt +Urht−1 + br) (6)
zt = σ(Wzxt +Uzht−1 + bz) (7)

The reset gate rt ∈ Rh is used to compute the candidate hidden layer activation for the next time step,
and thus determines to what extent the candidate activation depends on the input and the previous
hidden layer activation.

h̃t = tanh(Wxt +Uh(r� ht−1) + bh) (8)

On the one extreme, the previous activation is not considered at all, and the candidate activation
matches the feedforward activation considering the input (rt = 0). When rt = 1, on the other hand,
the candidate hidden layer activation is equal to the activation of an SRN. The update gate zt ∈ Rh

determines the proportion of a hidden unit’s previous activation ht−1 ∈ Rh that is retained, and how
much it is updated with h̃t:

ht = zt � ht−1 + (1− zt)� h̃t, (9)

When zt ≈ 1 the unit functions as a memory, keeping its previous activation. For small zt, the unit is
updated to match the candidate activation.

2.2 Results

We train 20 GRU and 20 LSTM model instances with one hidden layer with 15 hidden units and
one output unit to predict the outcome of an arbitrarily sampled subset of expressions from L1, L2,
L4, L5 and L7 (3000 expressions from each subset). Different runs differ with respect to weight
intialisation and the exact sentences in the training set. Word embeddings are updated during training.

We test all models on a large sample of expressions from {L1, . . . , L9}. In Figure 2, we plot a
summary of the results. All models perform well above an SRN baseline and learn to generalise
to both longer and shorter unseen sequences, as demonstrated by the smooth curve of the models’
performance. The LSTMs perform better on average, while the performance of the best GRU and
best LSTM model (decided by L9 performance) is comparable.

L1 L2 L3 L4 L5 L6 L7 L8 L9
0

1

2

3

4

5

m
ea

n
ab

so
lu

te
er

ro
r GRU average

GRU best
LSTM average

LSTM best
SRN average

SRN best

Figure 2: Mean absolute error of 20 runs of training for GRU and LSTM models.

3 Analysis

The initial results provide a convincing demonstration that both GRU and LSTM models have learned
to interpret – to some extent – the compositional structure of expressions from the arithmetic language,
and can use this to compute their meaning. We now proceed with analysing their internal behaviour,
aiming to discover how they do this, and how they can be improved.

3.1 Diagnostic classification

In our experiments we use a technique called diagnostic classification Hupkes et al. [2017]. Diagnostic
classification is based on the idea that if a model is using certain information during processing, it

3

should be possible to predict this information from its (hidden) state space, using a relatively simple
readout model (e.g., a linear classifier). To test whether networks are computing or representing a
certain variable or feature, an additional (neural) model is trained to predict the value of this variable
or feature at each point in time from the states a network goes through while processing sentences.
The accuracy of this model (the diagnostic classifier) is then taken as a qualitative measure of the
extent to which this information is computed by the original model.

3.2 Symbolic strategy

Veldhoen et al. find that the models they train to compute the meaning of expressions of the arith-
metic language follow a cumulative strategy, in which digits are integrated at the moment they
are encountered during processing.2 Two important components of this strategy are the subtotal
– which represents the intermediate prediction of the outcome of the expression according to the
cumulative strategy – and the operator mode, used to integrate the next digit with the subtotal.
Figure 3 contains some examples of expressions and the corresponding sequences of values for mode
and subtotal.

((((3 - 1) - -5) - 4) - 2)

+ + + + + - - + - - + - - + - - +

+ ++ ++
+

++
++

++
++

++
++

++
++

++
+

++
+

++
+

++ ++ ++ + + +

0 0 0 0 3 3 2 2 2 7 7 7 3 3 3 1 1

- - - -

mode

subtotal

stack all

stack min

(a) Left-branching, minus

(3 + (4 - (5 + (1 + -3))))

+ + + + + - - - - - - - - - - + +

+ + + ++ ++ ++ ++
-

++
-

++
-

++
--

++
--

++
--

++
--

++
-

++ +

0 3 3 3 7 7 7 2 2 1 1 4 4 4 4 4 4

- - - -+ -+ -+ -+ -

(b) Left-branching, mixed

(3 + (1 + (-2 + (4 + 3))))

+ + + + + + + + + + + + + + + + +

+ + + ++ ++ ++ ++
+

++
+

++
+

++
++

++
++

++
++

++
++

++
+

++ +

0 3 3 3 4 4 4 2 2 2 6 6 9 9 9 9 9

(c) Right-branching, plus

Figure 3: Three expressions and the values of mode and subtotal during processing, plus two
different examples of stacks used to compute the current mode.

Operator mode A possible way to compute the mode is to store the current mode on a stack
whenever an opening bracket is encountered, and pop the next mode from the stack whenever a
bracket closes (upper blue stack in Figure 3). Although elegant for its simplicity, this solution is not
consistent with the apparent ease of processing left-branching expressions, which in the described
strategy require heavy employment of the stack. The more difficult right-branching expressions
instead, lead to accessing the stack only when all computation is already finished (e.g. Figure 3b and
3c). An alternative possibility is to begin to employ the stack only when brackets are preceded by a
minus (lower, red stack in Figure 3). The stack for the latter strategy is shorter, and remains primarily
empty for left-branching expressions (see Figure 3a).

Diagnostic Classifiers We train diagnostic classifiers to confirm that the networks are in fact
integrating digits with the subtotal in a cumulative fashion, and find that indeed even for long
sequences both the operator mode and the subtotal of the cumulative strategy are predicted from
the hidden states with a very high accuracy for both GRU and LSTM models (not plotted). But how
is this operator mode computed? One feature that distinguishes the full-stack computation of the
operator mode from the one where the stack is only employed after a minus (upper blue and bottom
red stack in Figure 3, respectively), is that the latter requires keeping track of the scope of minus
operators. We train diagnostic classifiers to test if the hidden state encodes the property of being
within the scope of at least one minus (we call this feature minus_scope1+), and how many closing
brackets should still be seen to close this scope (close_minus_scope1+). Consider Figure 4 for a
worked out example of an expression and the values these variable take as the expression progresses.

In Figure 5a, we see that virtually all networks maintain a representation of minus_scope1+ during
processing. Furthermore, the error on the prediction of the number of closing brackets that need to be
encountered to close the scope of the minuses is very low (Figure 5b), indicating that minus_scope1+
is indeed a salient feature for the network. Additional diagnostic classifiers (results not plotted), show
that also the scope of minuses of deeper levels (minuses that are within the scope of another minus,
such as minus_scope2+ in Figure 4), can be inferred from the hidden states of the networks.

2An alternative strategy is be to follow a recursive algorithm, storing the outcomes of subtrees on a stack and
integrating them only at the end of the expression when all brackets are closed.

4

((-2 - (6 - ((8 + (-3 - 10)) - (-2 - 10)))) - (1 - -8))

0 0 0 0 1 1 1 2 3 3 3 4 4 4 4 3 2 2 3 3 3 3 2 1 0 0 0 1 1 1 1 0 0
1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1

+ + + - - - + + + + + + + - - + + - - - + + - + - + - - - + + - +
1 1 1 1 1 1 1 1 1 1 1 1 1 1

mode
switch mode

close minus scope1+
minus scope1+
minus scope2+
minus scope3+

Figure 4: Example sentence plus the values of different features during processing. For clarity
reasons, zero values of binary features are not printed.

L1 L2 L3 L4 L5 L6 L7 L8 L9
0.9

0.95

1

A
cc

ur
ac

y

LSTM best
LSTM average

GRU best
GRU average

(a)

L1 L2 L3 L4 L5 L6 L7 L8 L9
0.9

0.95

1

A
cc

ur
ac

y

(b)

Figure 5: Binary accuracy of diagnostic classifiers trained on predicting the features minus_scope1+
(left) and close_minus_scope1+ (right) from the hidden layer activations of trained models.

3.3 Utilising Diagnostic Classifiers

Aside from providing a way to quantitatively determine whether information is encoded in the hidden
states of a network, diagnostic classifiers can be also used to inspect where and how this information
is represented. There are many possible ways to do so, we present one case study that revolves around
understanding how information and processes are distributed and located inside a neural network, an
aspect which may play a role when one wants to re-utilise learned functions and address the problem
of catastrophic forgetting [Goodfellow et al., 2013, McCloskey and Cohen, 1989].

In Figure 6 we plot the values of the weights of the diagnostic classifiers trained to predict the variable
minus_scope1+ for the best GRU and LSTM models. Looking at these weights, the representation
of this variable seems to be distributed over several different units, that are connected to the diagnostic
classifier with a high weight. To measure the contributions of different units of the network to the
final accuracy, we test how well individual weights of the diagnostic classifier predict the feature on
their own, when all other weights of the classifier are set to 0. The result of this masking experiment
tells a different story than the weights visualisation: in both the LSTM and GRU model, there is one
single unit that can predict minus_scope1+ with almost perfect accuracy on its own, without using
any of the other units (Figure 7a and Figure 7b, colours match the weight visualisation in Figure 6).
Whether this is an artefact of the training regime leaving traces of previous attempts to solve the
problem, a way to ensure robustness of the network, or simply a consequence of the fact that different
functions implemented by the network are related, it is certainly worth exploring further.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bias

GRU

LSTM

−20 −15 −10 −5 0 5 10 15 20

Figure 6: Diagnostic classifier weights to predict minus_scope1+.

5

0 1 2 3 4 5 6 7 8 9 1011121314
0.4
0.5
0.6
0.7
0.8
0.9
1

Majority classifier
Minority classifier

A
cc

ur
ac

y

(a) GRU

0 1 2 3 4 5 6 7 8 9 1011121314
0.4
0.5
0.6
0.7
0.8
0.9
1

Majority classifier
Minority classifier

A
cc

ur
ac

y

(b) LSTM

Figure 7: Accuracy of individual diagnostic classifier weights in predicting minus_scope1+.

3.4 Diagnosing gates

Hupkes et al. propose that diagnostic classifiers may also be used to diagnose gates. We investigate
this possibility by focusing on the gates of the best performing GRU model. As the function of
gates is fundamentally different from the function of the hidden units – they are meant to modulate
information flow rather than to encode and memorise information and develop representations – the
types of hypotheses for gates differ from hypotheses for the hidden layer activations. For instance, a
gate would not likely maintain a prediction of the subtotal, as this is not impacting how information
should be processed by the hidden layer,3 but it may contain information about the operator mode.
We train diagnostic classifiers to predict minus_scope1+ and close_minus_scope1+, whether the
mode should be switched in the current time step (switch_mode) and what the current mode is.

From the results (Figure 8a) we can see that minus_scope1+ and close_minus_scope1+ are much
better represented by the gates than the operator mode. This is in itself not surprising, as under
the hypothesised strategy the former two are sub-features used to compute the latter, and confirms
our current strategy hypothesis. Interestingly, contrary to the hidden layer, the computation of
minus_scope1+ seems to be distributed over the gate values, with no single gate value predicting it
with high accuracy on its own (Figure 8b). In the light of the difference in function of the gates and
the hidden layer, this is not entirely surprising: where the hidden layer is required to keep track of
minus_scope1+, the gate units have to use this information to decide how much every network unit
should contribute to the next timestep. Furthermore, whereas a hidden layer unit can send information
to all gates, a gate unit impacts only one hidden layer unit, making distribution of information over
the gates more essential.

Another striking observation is that for this particular model, the update gate (left bars in Figure 8a)
outperforms the reset gate (right bar) for all features. Both the division of work between gates as
well as their exact function is a largely unexplored area, that is most certainly worth exploring. From
these results only it is not possible to draw definite conclusions, but it demonstrates that diagnostic
classifiers can provide further insights in such a quest.

A B C D E
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A minus scope1+
C mode
B brackets to close
D switch mode
E subtotal

A
cc
u
ra
cy

update gate z
reset gate r

(a) Diagnostic classification accuracy

w 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.4
0.5
0.6
0.7
0.8
0.9
1

Majority classifier
Minority classifier

left: update gate z
right: reset gate r

A
cc

ur
ac

y

(b) Masked weights for in_1minus_scope diagnostic classifier

Figure 8: Diagnosing the gates of the best GRU model

3And in fact, a diagnostic classifier to predict this value from the gates has a very low accuracy, see Figure 8a.

6

4 Symbolic Guidance

In the previous section we explored different methods to qualitatively and quantitatively study
recurrent neural networks, and suggested several possible paths for future research. In this section,
we explore one such path, examining a method to employ the insight in the internal dynamics of a
model to improve it in a more targeted way, that we call symbolic guidance.

The idea of symbolic guidance is to train a network not only directly on its target, but to provide
additional intermediate targets that provide information to steer the model in the direction of a desired
solution. Oftentimes, such targets will be motivated by an external symbolic model of the task at
hand, but also different targets may be chosen.4 In our case, the first choice of additional symbolic
targets in this case study is the prediction of the subtotal of the cumulative strategy (see Figure 3).
This choice of target is hoped to specifically help with processing right-branching sentences, that
appear to be difficult for all models.

4.1 Training

We train 10 GRU and 10 LSTM model instances considering the error signal of two linear output
units: one that is given the subtotal of the expression as described by the cumulative strategy, and
one that has as target to predict the outcome of the entire expression at the end. To compute the
gradients, we define a loss function that consists of 0.1 times the (mse) loss of the latter unit plus 0.9
times the (mse) loss of the prediction of the intermediate result. We train and test on the same data
sets as before.

4.2 Results and error analysis

We plot the results of the training in Figure 9. For the LSTM we observe a clear improvement
regarding both average and best performance. For the GRU model, providing additional targets
did initially not seem to have had a positive effect. As our symbolical protocol was specifically
designed to target sentences for which the previous models showed a low accuracy (in particular:
right-branching sentences), we further study the results by adding a number of new subclasses to our
test set.

L1 L2 L3 L4 L5 L6 L7 L8 L90

0.5

1

1.5

2

2.5

3

m
ea

n
ab

so
lu

te
er

ro
r GRU average

GRU baseline
GRU best

LSTM average
LSTM baseline

LSTM best

Figure 9: Training with symbolic guidance.

Processing deep structures Natural language models are quite commonly evaluated on a fairly
superficial basis, by considering the overall performance on the entire test set. The symbolic nature
of the arithmetic language allows us to study in more detail the effect of the symbolic guidance
on as structural level. In Figure 10 we plot the performance of both the original models and the
symbolically guided models on a wide range of different structures that may pose different processing
difficulties. The LSTM models appear to have reached a solid improvement across all categories,
showing a much more constant error profile for difficult and rarely seen categories. The GRU, on

4The method can be seen as an instance of multitask learning, which has been successfully applied to several
different natural language processing tasks [e.g. Collobert and Weston, 2008, Søgaard and Goldberg, 2016], but
shows mixed results in general, due to the intricacy of finding appropriate auxiliary tasks [Bingel and Søgaard,
2017, Alonso and Plank, 2016]. In symbolic guidance, this is not a concern, as auxiliary targets are motivated by
diagnostic classification of already trained models and are thus tailor made for the task at hand.

7

the other hand, shows an improvement in some categories, while worsening in others. What exactly
causes these differences is unclear from only these experiments, but it raises an important point of
consideration: if LSTM and GRU models tend to have a preference for different types of solutions, or
have a different susceptibility for symbolic guidance, this may have an impact on how they should be
trained, but also on the types of (cognitive) hypotheses that we can infer from them. Further research
is required to improve our understanding on this matter. The results also show that the evaluation of
models should be treated with care, and that their overall accuracy on a large test set cannot always
be taken as a indicative of their behaviour, as models with similar accuracies can be specialised on
very different inputs.

L9r- r-L8r L9r r-L8r+ r-L8l- r-L8l+ r-L8l L9r+ L9l
0

5

10

m
ea

n
ab

so
lu

te
er

ro
r

GRU average
GRU baseline

GRU best
LSTM average
LSTM baseline

LSTM best

L9r right-branching in L9
L9r left-branching in L9
L9r- right-branching l9, only -
L9r+ right-branching l9, only +
r-L8r of the form (l1-l8r)
r-L8l+ of the form (l1-l8l+)
r-L8l- of the form (l1-l8l-)

Figure 10: Error analysis

5 What now?

We presented an elaborate analysis of GRU and LSTM networks trained on the task of predicting the
outcome of nested arithmetic expressions, which resulted in several interesting conclusions, but also
raised many questions for further research. Using diagnostic classification, we revealed the strategy
that both GRU and LSTM networks follow when processing such expressions: by keeping track of
the operator mode and using this to cumulatively integrate every digit at the moment it is encountered
with a preliminary prediction of the solution. By analysing the weights of the diagnostic classifiers,
we found that they do so by keeping track of the scope of minuses. For both the best GRU and LSTM
model instance, a single unit acts as a flag for being in the scope of at least one minus. Diagnosing
also the gates, we demonstrated that the knowledge contained in the gates is more distributed, and
concerns aspects of the strategy that are related to processing rather than memory. Lastly, we showed
that knowledge about the internal dynamics can be leveraged by using symbolic guidance, in which
symbolic targets are used to help networks to learn a strategy that they are already inclined to follow.

Throughout the paper, we provided several suggestions for further research, such as continuing with
the analysis of the gates of GRU and LSTM models, comparing the susceptibility of GRUs and
LSTMs to symbolic guidance, and using diagnostic classification to find appropriate additional targets
to improve model performance. One future path that we consider particularly promising is using
diagnostic classifiers to address catastrophic forgetting, a substantial problem of neural networks that
we already briefly touched upon. Catastrophic forgetting refers to the incapability of neural networks
to do compositional skill learning: Whenever a trained neural network is presented with a new task, it
seems to inevitably overwrite any previously learned information or skills. A promising approach to
solve this problem is to selectively allow learning on specific weights that are important for certain
tasks [see e.g. Kirkpatrick et al., 2017, Lee et al., 2017], but this still requires knowledge on which
weights map are specialised for which task. It is here exactly that we see a possibility for diagnostic
classifiers, that can help to detect where and how specific functions are encoded.

While in this exploratory paper we found no space to address also the automation of the use of
diagnostic classifiers, further research could focus on embedding them in meta-systems which
automatically search for optimal neural network configurations.

8

References
Héctor Martínez Alonso and Barbara Plank. Multitask learning for semantic sequence prediction

under varying data conditions. CoRR, abs/1612.02251, 2016. URL http://arxiv.org/abs/
1612.02251.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Proceedings of the 3rd Conference on Learning Representations
(ICLR2015), 2015.

Joachim Bingel and Anders Søgaard. Identifying beneficial task relations for multi-task learning
in deep neural networks. CoRR, abs/1702.08303, 2017. URL http://arxiv.org/abs/1702.
08303.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: encoder–decoder approaches. In Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 103–111, 2014.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pages 160–167, New York, NY, USA, 2008. ACM.

Jeffrey L Elman. Finding Structure in Time. Cognitive science, 14(2):179–211, 1990.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical investi-
gation of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and ‘diagnostic classifiers’
reveal how recurrent and recursive neural networks process hierarchical structure. (under review),
2017. URL http://dieuwkehupkes.nl/research/JAIR.pdf.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the National Academy of Sciences, page
201611835, 2017.

Sang-Woo Lee, Chung-Yeon Lee, Dong-Hyun Kwak, Jung-Woo Ha, Jeonghee Kim, and Byoung-Tak
Zhang. Dual-memory neural networks for modeling cognitive activities of humans via wearable
sensors. Neural Networks, 2017.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of learning and motivation, 24:109–165, 1989.

Anders Søgaard and Yoav Goldberg. Deep multi-task learning with low level tasks supervised at
lower layers. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, volume 2, pages 231–235, 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pages 3104–3112, 2014.

Sara Veldhoen, Dieuwke Hupkes, and Willem Zuidema. Diagnostic classifiers: Revealing how
neural networks process hierarchical structure. In Pre-Proceedings of the Workshop on Cognitive
Computation: Integrating Neural and Symbolic Approaches (CoCo @ NIPS 2016), 2016.

9

http://arxiv.org/abs/1612.02251
http://arxiv.org/abs/1612.02251
http://arxiv.org/abs/1702.08303
http://arxiv.org/abs/1702.08303
http://dieuwkehupkes.nl/research/JAIR.pdf

	Introduction
	Hierarchical compositionality in recurrent neural networks
	Models
	Results

	Analysis
	Diagnostic classification
	Symbolic strategy
	Utilising Diagnostic Classifiers
	Diagnosing gates

	Symbolic Guidance
	Training
	Results and error analysis

	What now?

