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Abstract

Ideally, decoding models could be used for the dual purpose of prediction and
neuroscientific knowledge gain. However, interpreting even linear decoding mod-
els beyond classification accuracies is difficult. Haufe and colleagues suggested
projecting feature weights onto activation maps may enhance interpretability. Here
we show that redundancy and noise, typically found in fMRI data, can further com-
plicate interpretation – even after projection onto activation maps. In the presence
of non-Gaussian noise seen with artifacts such as scanner drift, motion, and peri-
odic biorhythms, projecting feature weights onto activation maps yields spurious
patterns; for example, noise typically associated with scanner drift can cause the ac-
tivation weights of noise sources to be greater than those of task-associated signals.
These analyses suggest that certain decoding or backward models are inherently
limited by their approaches to successfully model the structure of incoming noise,
and that improper assumptions of this noise structure yields misleading interpretive
maps.

1 Introduction

Encoding and decoding are the two most popular approaches used to study functional MRI (fMRI)
neuroimaging data. Both methods have complementary goals, yet anti-correlated analysis pathways.
Encoding models are referred to as forward models; these begin with the stimulus and attempt to
understand how measured responses vary due to variation in the stimuli. Decoding models, conversely,
are backward models, which start with the responses or voxel measurements and attempt to see how
much can be learned about the stimulus from response patterns.

Encoding methods have a longer history of application; these classically adopt a mass univariate
approach, where each voxel measurement is treated independently at the first level of analysis. Spatial
dependencies are introduced later during inference through random field theory (Worsley et al. 1996).
In typical encoding studies, an experimental variable or stimulus is manipulated, a general linear
model is applied along with spatial smoothing, and the result is a map of functional activation in the
brain.
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Encoding models suffered from two key issues related to interpretation and analysis. First, many
experimentalists would infer that a particular cognitive process was engaged on the basis of activation
in a particular brain region. However this type of reverse inference is only deductively valid if a
particular brain region is activated exclusively during a particular cognitive process (Poldrack 2006),
(see Figure 1, left column). Secondly, the underlying neural code was thought to be distributed
and the relative modularity remained unclear. For example, the fusiform face area was previously
thought to be a homogeneous module showing strong activation preference for faces (e.g. Kanwisher
and McDermott 1997). However Cukur et al. (2014) later demonstrated that at least three different
distributed subpopulations with unique tuning profiles exist across the FFA. Therefore analyzing each
voxel independently coupled with random field theory would potentially miss distributed patterns of
activity that were related to stimulus categories.

Decoding models provided some degree of a solution to these issues. Decoding models use machine
learning techniques to find patterns of voxels that collectively discriminate between experimental
conditions. The allure of decoding methods rested on the notion that greater insight into the patchy
functional segregation in the brain may be achieved by analyzing voxel measurements in combination
as opposed to individually (Friston 2009). Secondly, the multivariate nature of decoding approaches
makes it possible to cancel out noise, thereby improving sensitivity (e.g., Blankertz et al. 2011).
Decoding studies grew in popularity as they demonstrated the capability to discriminate stimulus
categories that had previously eluded general linear model analysis (Kamitani Tong 2005; Haynes et
al. 2007; etc.). Classification techniques ranging from decision trees to deep neural networks have
been applied to neuroimaging data. However, by far the most widely adopted practice is to assume
that the data from different categories can be shattered linearly with a hyperplane.

However, there are also issues with the interpretation of decoding analyses (see Figure 3 , right
column). The process of training and testing a classifier furnishes a set of feature weights, typically
called the w vector, whose elements collectively influence how the data are projected into this space,
along with predictive accuracies. In numerous decoding studies, the feature weights were mapped
onto brain data directly. However, the w vector is orthogonal to the decision boundary and from this
geometric perspective, it is clear that feature weights should not be interpreted in a direct manner
(e.g., Guyon Elisseeff 2002; Haufe et al. 2014). In this sense, presenting feature weights onto
brain maps may have led to an implied interpretation that these images corresponded to meaningful
representational patterns in the neural code. Furthermore, the presence of stimulus information in a
brain region does not imply that this information serves the function of representing the stimulus in
the context of the brain’s overall operation (Kriegeskorte 2011). Therefore, the analogous issue of
reverse inference also exists within the decoding model approach.

2 Activation Maps

Several methods have been developed for “reading out” which voxels are contributing the most
to classifier performance (Norman et a. 2006). One issue with interpreting backward models or
decoding results is that significant weight may be observed in spatial locations whose measurements
are statistically independent from the brain process under study. Haufe et al. (2014) highlighted this
issue as follows:

Suppose we have two measurement channels, x̃1(n) and x̃2(n), and we are trying to discriminate
between two tasks. The first channel is informative, and the class means differ. In the second
channel, the class means are equal, and therefore this measurement or voxel does not contain class-
specific information. However, it is possible for the Bayes-optimal classification according to a linear
discriminant analysis (LDA) to assign a considerably stronger weight to the noise channel (see Figure
2, top row middle column).

Their proposed remedy for the linear case is as follows. In the backward model case, the goal is to
extract latent factors s̃(n) as functions of the observed data, x̃(n). In the linear case, the mapping
from observations to factors can be summarized by an N x M transformation matrix, W ∈MxK , and
the backward model can be described by:

WT x̃(n) = s̃(n) (1)
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Figure 1: A graph representing the relationship between experimental manipulations, congitive
processes, and observed variables. In the left column, the classic analysis flow of an encoding or
forward model is shown. At the input level, an experimental manipulation is made which induces
hidden cognitive processes to take place. Measurements are then made, which are typically analyzed
using a general linear model. Infering that these activation patterns are related to the stimulus is a
classic inference, however infering that activated regions implies that a certain cognitive process
is taking place consistutes reverse inference. In the right column, a backward model or decoding
model analysis is shown. At the input level, here, is the functional activations measurements, and
the stimulus or predicted experimental manipulation is at the output level. Interpreting the feature
weights directly and in isolation is incorrect, since this approach is inherently multivariate.

In order to read out the weights as meaningful, one must construct activation maps, A(n), from the
extraction filters. In the square case where K=M, we simply multiply by W−T , as follows:

X(n) = W−T s̃(n), (2)

And our activation patterns become:

A(n) = W−T (3)

Although this approach of projecting feature weights or extraction filters onto activation patterns is
useful (Haufe et al. 2014), read out from this process remains complex. Here we show that different
types of noise to be expected in functional MRI measurements, can contaminate the ability to recover
information even in an the extremely simple case: a linear discriminant analysis (LDA) classifier
with two features. Redundancy is also thought to be common in fMRI measurements, since spatially
contiguous voxels may contain similar information. This observation has motivated the use of both
spatial smoothing and Gaussian random field application to forward model analysis in fMRI data.
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However, we show here that this redundancy also further complicates the issue of interpretation in
backward models.

3 Noise Effects Recovery of Activations

Here, we continue with this same illustrative example as before. We have two measurement channels,
x̃1(n) and x̃2(n), and we are trying to discriminate between two tasks. The first channel is informative,
and the class means differ. In the second channel, the class means are equal, and does not contain
class-specific information. Here, we are interested in testing the extent to which back projecting the
weights or extraction filters onto activations is effective, when the noise channel, x̃2(n), has varying
noise profiles. In each case, the correlation of the data with the task ỹ for the informative voxel
measurement remains the same r = Corr(ỹ, x̃1) = 0.75, and the correlation of the noise channel
provides poor separability of the measurements, r = Corr(ỹ, x̃2) = 0.09. For classification, we use
a simple LDA model, assuming Gaussian within-class distributions.

In Figure 2, four different time courses are simulated that represent noise commonly measured in
fMRI. In the top row, Gaussian noise is shown. When LDA is applied in combination with this
noisy measurement and the informative measurement, the feature weights or extractions assign a
strong weight to the noise channel, and a weak weight to the informative channel. However, when
these extractions are mapped onto activations using Eq 2., we effectively recover the true infomation
contained in each channel.

However, in each of the following three cases, the information is not effectively recovered. Scanner
drift is very common in the scanning environment, and temporally contiguous portions of drift
typically remain in the data, even after high pass filtering. In the case of drift noise, the informative
measurement is correctly assigned a higher weight than the noise measurement. However, after
projecting onto activations, the reverse happens - the noise measurement is assigned a stronger weight
than the channel with class specific information.

Noise due to head motion is also common in the scanning environment. Although motion correction
algorithms exist, head motion that remains in the data has continued to cause problems with fMRI
analysis (eg. Power 2014). In the case where the motion introduced causes a step change in the noise,
the result is simlar to that of above in the drift motion case; the activations do not reflect the actual
information within the data.

4 Redundancy Effects Recovery of Activations

In functional neuroimaging, features can be extracted from a diverse set of variables. Interestingly
the extent to which features are statistically independent can also influence the ability to interpret
decoding output. For example, in the rare circumstance where all features are completely independent
and orthogonal, then their inner product is zero, making the weights directly interpretable. In this case,
a naive Bayes classifier may be applied since each element is treated as conditionally independent
(e.g., Douglas et al. 2014). However, in most cases, the features are not statistically independent (i.e.,
spatially adjacent neuroimaging voxels) and may contain redundant information.

In early decoding studies, feature selection was applied a separate step for computational and
numerical considerations. In the simplest case the data were simply variance thresholded. Since then,
t-test filtering, wrapper methods and a priori selection of an ROI have been used to reduce the number
of inputs. However, many of these methods favor selection of features that maximize accuracy
individually (Guyon et al. 2002). The searchlight method has also remained popular, whereby
spatially contiguous and highly correlated voxels are pooled together. However, this method may still
result in spatially distinct searchlight features that have highly correlated temporal information.

Here, we continue with our example with the simple LDA case. However, instead of using a noise
channel, we use a redundant channel, x̃j(n). Figure 3 shows the timecourse of each of our channels,
which are both themselves informative. Figure 3 (d) shows what happens to the activation weight
on the initial informative channel x̃1(n) when additional redundant features are added to the LDA
classifier.

Our results show that introducing redundant channels lowers the resulting activation weights for
the informative channel. This similarly suggests that groups of highly-relevant features may show
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Figure 2: Noise and the simple linear discriminant analysis case with two data measurements. On
the left hand side, the r value is shown for each measurment channel. The blue channel, x1 is the
informative channel and the gold channel x2 is the noise channel. This value remains constant in
each case shown. On the top row, the gold channel contains the timecourse data for the gaussian
noise case, which is overlaid onto a black line which represents the time course of the task switching
between experimental conditions as is the case in classic block designs in fMRI studies. The middle
column shows the extraction filter weights. In the Guassian case on the top row, the noise channel is
assigned a stronger weight than the informative channel. However, the correct weights are recovered
as activations, after applying the Haufe et al. (2014) method (top right). Rows 2, 3, and 4, show
results for scanner drift, head motion, and periodic noise. In each of these cases, the activaitons no
longer reflect the channel information.

activaton weights that are similar to those of noise, because the individual activation weights are
diminished when they are large in number, despite their relevance. A low activation weight is not
specific for an irrelevant unit.

5 Conclusions

Even with linear classifiers, the feature weights or model parameters interact to predict the response
pattern label. This multivariate interaction renders the interpretation of feature weights complex.
Projecting extraction filters onto activations can improve the ability to interpret decoding or backward
models. However, we observed that this method is ineffective when the noise characteristics deviate
from the assumption that they are Gaussian distributed. Scanner drift, head motion, and sources
of periodic noise are common in the fMRI environment, and may pose problems even after data
scrubbing. In the case when these three types of noise were present in a measurement channel,
the activation method was unable to recover the class specific information contained in either the
informative channel or the noise channel - even in the simplest case of a binary discrimination task
with two features using LDA.
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Figure 3: Redundancy and the simple linear discriminant analysis case with a binary classification
task. (a) the timecourse of x1 is shown, overlaid onto the black line which indicates the task switching
(b) the timecourse of an example redundant feature is similarly shown (c) the r or class specific
information in each channel is shown (d) the activation weight on the initial channel is show over
increasing the number of redundant data measurements from 1 to 100.

It can also be shown that utilizing the activation recovery method is circular when the assumptions
of LDA are met. In the case where the noise follows a Gaussian distribution and the covariance
matrices are full rank, the resulting activation weights are proportional to the values that one would
have obtained had they used a classic encoding forward model within a general linear model context
for examining fMRI contrasts.

Redundancy is also problematic to interpreation. We observed a diminution in the activations
information present in our informative channel that appeared to decline nearly exponentially. After
only a few redundant voxels, the information dropped considerably, and dropped nearly to zero
after one hundred. Initially, one hundred redundant features may appear large. However, fMRI
data typically contain over 100,000 voxels. If voxels themeselves are being used as the features for
decoding, it does not seem unreasonable to expect that many would be measuring activations time
courses that are similar, and may even be spatially distributed due to the functional connectivity of
the human brain. Both non-Gaussian noise and redundancy should be taken into consideration when
using the activation method, which is now implemented in many neuroimaging analysis toolboxes.
Feature selection methods that reduce redundancy, and or imposing additional sparsity constraints
(e.g., L1 norm, elastic method, etc.) may reduce problems with redundancy (Xie et al. 2017).

Although most techniques for classification of neuroimaging data have been based on linear methods
(Blankertz et al. 2008; Douglas et al. 2011; Douglas et al. 2013), deep neural networks (DNN)
have recently started to be applied to these data (e.g., Khaligh-Razavi and Kriegeskorte 2014). A
limiting factor in the applicability of DNNs to neuroimaging data was the idea that these black box
methods were not interpretable. Layer-wise relevance propagation (LRP) has recently provided a
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principled mechanism for attributing the share that each input variable contributes to the classification
decision. This method was recently applied to interpret DNNs used to classify EEG data, revealing
how biologically plausible attributes at each layer of the network contributed to the classification
decision (Strum et al. 2016). Moving forward, DNNs in combination with the LRP method may
prove highly useful within the neuroimaging domain where the application of machine learning is
dually motivated by classification performance and interpretation.
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